BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 28850607)

  • 1. A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism.
    Agüera A; Ahn IY; Guillaumot C; Danis B
    PLoS One; 2017; 12(8):e0183848. PubMed ID: 28850607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter Estimations of Dynamic Energy Budget (DEB) Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.
    Agüera A; Collard M; Jossart Q; Moreau C; Danis B
    PLoS One; 2015; 10(10):e0140078. PubMed ID: 26451918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia tolerance associated with activity reduction is a key adaptation for Laternula elliptica seasonal energetics.
    Morley SA; Peck LS; Miller AJ; Pörtner HO
    Oecologia; 2007 Aug; 153(1):29-36. PubMed ID: 17436022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica.
    Cummings V; Hewitt J; Van Rooyen A; Currie K; Beard S; Thrush S; Norkko J; Barr N; Heath P; Halliday NJ; Sedcole R; Gomez A; McGraw C; Metcalf V
    PLoS One; 2011 Jan; 6(1):e16069. PubMed ID: 21245932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival and production in variable resource environments.
    Muller EB; Nisbet RM
    Bull Math Biol; 2000 Nov; 62(6):1163-89. PubMed ID: 11127518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life history traits to predict biogeographic species distributions in bivalves.
    Montalto V; Rinaldi A; Sarà G
    Naturwissenschaften; 2015 Oct; 102(9-10):61. PubMed ID: 26373559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal proliferation rates and the capacity to express genes involved in cell cycling and maintenance in response to seasonal and experimental food shortage in Laternula elliptica from King George Island.
    Husmann G; Philipp EE; Abele D
    Mar Environ Res; 2016 Jul; 118():57-68. PubMed ID: 27180267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From individuals to populations to communities: a dynamic energy budget model of marine ecosystem size-spectrum including life history diversity.
    Maury O; Poggiale JC
    J Theor Biol; 2013 May; 324():52-71. PubMed ID: 23395776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamic energy budget (DEB) model for the energy usage and reproduction of the Icelandic capelin (Mallotus villosus).
    Einarsson B; Birnir B; Sigurðsson S
    J Theor Biol; 2011 Jul; 281(1):1-8. PubMed ID: 21458465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models.
    Nisbet RM; Jusup M; Klanjscek T; Pecquerie L
    J Exp Biol; 2012 Mar; 215(Pt 6):892-902. PubMed ID: 22357583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem.
    Block W; Lewis Smith RI; Kennedy AD
    Biol Rev Camb Philos Soc; 2009 Aug; 84(3):449-84. PubMed ID: 19659886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic inhibition mechanism for maintenance.
    Tolla C; Kooijman SA; Poggiale JC
    J Theor Biol; 2007 Feb; 244(4):576-87. PubMed ID: 17069860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of sea-ice dynamics on coastal Antarctic benthos: A case study on lantern clams (Laternula elliptica) in Adélie Land.
    Thébault J; Uvanović H; Amice E; Chauvaud L; Peharda M
    Mar Environ Res; 2023 Nov; 192():106220. PubMed ID: 37832282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term oceanographic and ecological research in the Western English Channel.
    Southward AJ; Langmead O; Hardman-Mountford NJ; Aiken J; Boalch GT; Dando PR; Genner MJ; Joint I; Kendall MA; Halliday NC; Harris RP; Leaper R; Mieszkowska N; Pingree RD; Richardson AJ; Sims DW; Smith T; Walne AW; Hawkins SJ
    Adv Mar Biol; 2005; 47():1-105. PubMed ID: 15596166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relating suborganismal processes to ecotoxicological and population level endpoints using a bioenergetic model.
    Ananthasubramaniam B; McCauley E; Gust KA; Kennedy AJ; Muller EB; Perkins EJ; Nisbet RM
    Ecol Appl; 2015 Sep; 25(6):1691-710. PubMed ID: 26552275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating mechanistic models and climate change projections to predict invasion of the mussel, Mytilopsis sallei, along the southern China coast.
    Tan ALS; Cheng MCF; Giacoletti A; Chung JX; Liew J; Sarà G; Williams GA
    Sci Total Environ; 2021 Mar; 762():143097. PubMed ID: 33139009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body size-mediated starvation resistance in an insect predator.
    Gergs A; Jager T
    J Anim Ecol; 2014 Jul; 83(4):758-68. PubMed ID: 24417336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and body-size dependent response of marine pelagic communities to projected global climate change.
    Lefort S; Aumont O; Bopp L; Arsouze T; Gehlen M; Maury O
    Glob Chang Biol; 2015 Jan; 21(1):154-64. PubMed ID: 25044507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chapter 2. Vulnerability of marine turtles to climate change.
    Poloczanska ES; Limpus CJ; Hays GC
    Adv Mar Biol; 2009; 56():151-211. PubMed ID: 19895975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring physiological energetics of loggerhead turtle (Caretta caretta) from existing data using a general metabolic theory.
    Marn N; Kooijman SALM; Jusup M; Legović T; Klanjšček T
    Mar Environ Res; 2017 May; 126():14-25. PubMed ID: 28219019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.