These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28850788)

  • 1. Tuning and Predicting Mesh Size and Protein Release from Step Growth Hydrogels.
    Rehmann MS; Skeens KM; Kharkar PM; Ford EM; Maverakis E; Lee KH; Kloxin AM
    Biomacromolecules; 2017 Oct; 18(10):3131-3142. PubMed ID: 28850788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable enzymatically degradable hydrogels for controlled cargo release with dynamic mechanical properties.
    Tanimoto R; Ebara M; Uto K
    Soft Matter; 2023 Aug; 19(33):6224-6233. PubMed ID: 37493066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry.
    Shih H; Lin CC
    Biomacromolecules; 2012 Jul; 13(7):2003-12. PubMed ID: 22708824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosslinker length dictates step-growth hydrogel network formation dynamics and allows rapid on-chip photoencapsulation.
    Jiang Z; Shaha R; McBride R; Jiang K; Tang M; Xu B; Goroncy AK; Frick C; Oakey J
    Biofabrication; 2020 Apr; 12(3):035006. PubMed ID: 32160605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo-cross-linked biodegradable hydrogels based on n-arm-poly(ethylene glycol), poly(ε-caprolactone) and/or methacrylic acid for controlled drug release.
    Hou P; Zhang N; Wu R; Xu W; Hou Z
    J Biomater Appl; 2017 Oct; 32(4):511-523. PubMed ID: 28899224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diels-Alder hydrogels with enhanced stability: First step toward controlled release of bevacizumab.
    Kirchhof S; Gregoritza M; Messmann V; Hammer N; Goepferich AM; Brandl FP
    Eur J Pharm Biopharm; 2015 Oct; 96():217-25. PubMed ID: 26253504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the Impact of Hydrolytically Cleavable Groups on the Stability of Poly(ethylene glycol) Based Hydrogels Cross-Linked via the Inverse Electron Demand Diels-Alder (iEDDA) Reaction.
    Ziegler CE; Graf M; Nagaoka M; Goepferich AM
    Macromol Biosci; 2022 Dec; 22(12):e2200226. PubMed ID: 36112280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Term Controlled Protein Release from Poly(Ethylene Glycol) Hydrogels by Modulating Mesh Size and Degradation.
    Tong X; Lee S; Bararpour L; Yang F
    Macromol Biosci; 2015 Dec; 15(12):1679-86. PubMed ID: 26259711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of PEG-carboxymethylcellulose hydrogel by thiol-norbornene photo-click chemistry.
    Lee S; Park YH; Ki CS
    Int J Biol Macromol; 2016 Feb; 83():1-8. PubMed ID: 26616448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cleavable carbamate linkers for controlled protein delivery from hydrogels.
    Hammer N; Brandl FP; Kirchhof S; Goepferich AM
    J Control Release; 2014 Jun; 183():67-76. PubMed ID: 24680687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-healing PEG-poly(aspartic acid) hydrogel with rapid shape recovery and drug release.
    An H; Zhu L; Shen J; Li W; Wang Y; Qin J
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110601. PubMed ID: 31675642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release.
    Lee S; Tong X; Yang F
    Biomater Sci; 2016 Mar; 4(3):405-11. PubMed ID: 26539660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing well-defined photopolymerized synthetic matrices for three-dimensional culture and differentiation of induced pluripotent stem cells.
    Ovadia EM; Colby DW; Kloxin AM
    Biomater Sci; 2018 May; 6(6):1358-1370. PubMed ID: 29675520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol-ene photopolymerizations provide a facile method to encapsulate proteins and maintain their bioactivity.
    McCall JD; Anseth KS
    Biomacromolecules; 2012 Aug; 13(8):2410-7. PubMed ID: 22741550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H; Liu HY; Lin CC
    Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite Hydrogels With Controlled Degradation in 3D Printed Scaffolds.
    Jiang Z; Shaha R; Jiang K; McBride R; Frick C; Oakey J
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):261-264. PubMed ID: 30892230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery.
    Wang Y; Zhang S; Benoit DSW
    J Control Release; 2018 Oct; 287():58-66. PubMed ID: 30077736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA).
    Wu J; Xiao Z; He C; Zhu J; Ma G; Wang G; Zhang H; Xiao J; Chen S
    Acta Biomater; 2016 Aug; 40():172-181. PubMed ID: 27142255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels.
    Saik JE; Gould DJ; Watkins EM; Dickinson ME; West JL
    Acta Biomater; 2011 Jan; 7(1):133-43. PubMed ID: 20801242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a composite biomaterial system for tissue engineering applications.
    Jiang B; Akar B; Waller TM; Larson JC; Appel AA; Brey EM
    Acta Biomater; 2014 Mar; 10(3):1177-86. PubMed ID: 24321351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.