These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28850925)

  • 21. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue.
    Goh KL; Holmes DF
    Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28441344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction.
    Goh KL; Holmes DF; Lu HY; Richardson S; Kadler KE; Purslow PP; Wess TJ
    J Biomech Eng; 2008 Apr; 130(2):021011. PubMed ID: 18412498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Equilibrium Constitutive Model of Anisotropic Cartilage Damage to Elucidate Mechanisms of Damage Initiation and Progression.
    Stender ME; Regueiro RA; Klisch SM; Ferguson VL
    J Biomech Eng; 2015 Aug; 137(8):081010. PubMed ID: 26043366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphology and mechanical properties of multi-stranded amyloid fibrils probed by atomistic and coarse-grained simulations.
    Yoon G; Lee M; Kim K; Kim JI; Chang HJ; Baek I; Eom K; Na S
    Phys Biol; 2015 Dec; 12(6):066021. PubMed ID: 26717468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced-Glycation Endproducts: How cross-linking properties affect the collagen fibril behavior.
    Kamml J; Acevedo C; Kammer DS
    ArXiv; 2023 Aug; ():. PubMed ID: 37608934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons.
    Lavagnino M; Arnoczky SP; Frank K; Tian T
    J Biomech; 2005 Jan; 38(1):69-75. PubMed ID: 15519341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils.
    Kamml J; Ke CY; Acevedo C; Kammer DS
    J Mech Behav Biomed Mater; 2023 Jul; 143():105870. PubMed ID: 37156073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale Characterization of Type I Collagen Fibril Stress-Strain Behavior under Tensile Load: Analytical vs. MD Approaches.
    Gouissem A; Mbarki R; Al Khatib F; Adouni M
    Bioengineering (Basel); 2022 Apr; 9(5):. PubMed ID: 35621471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon.
    Provenzano PP; Vanderby R
    Matrix Biol; 2006 Mar; 25(2):71-84. PubMed ID: 16271455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mechanical properties of simulated collagen fibrils.
    Parkinson J; Brass A; Canova G; Brechet Y
    J Biomech; 1997 Jun; 30(6):549-54. PubMed ID: 9165387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro.
    Halliday NL; Tomasek JJ
    Exp Cell Res; 1995 Mar; 217(1):109-17. PubMed ID: 7867709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone.
    Willett TL; Sutty S; Gaspar A; Avery N; Grynpas M
    Bone; 2013 Feb; 52(2):611-22. PubMed ID: 23178516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissipation and recovery in collagen fibrils under cyclic loading: A molecular dynamics study.
    Suhail A; Banerjee A; Rajesh R
    Phys Rev E; 2024 Feb; 109(2-1):024411. PubMed ID: 38491641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collagen network strengthening following cyclic tensile loading.
    Susilo ME; Paten JA; Sander EA; Nguyen TD; Ruberti JW
    Interface Focus; 2016 Feb; 6(1):20150088. PubMed ID: 26855760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril.
    Svensson RB; Hansen P; Hassenkam T; Haraldsson BT; Aagaard P; Kovanen V; Krogsgaard M; Kjaer M; Magnusson SP
    J Appl Physiol (1985); 2012 Feb; 112(3):419-26. PubMed ID: 22114175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mechanical model of the cornea considering the crimping morphology of collagen fibrils.
    Liu X; Wang L; Ji J; Yao W; Wei W; Fan J; Joshi S; Li D; Fan Y
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2739-46. PubMed ID: 24692124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiscale modeling of knee ligament biomechanics.
    Adouni M; Mbarki R; Al Khatib F; Eilaghi A
    Int J Numer Method Biomed Eng; 2021 Jan; 37(1):e3413. PubMed ID: 33174350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical Deformation Mechanisms and Properties of Prion Fibrils Probed by Atomistic Simulations.
    Choi B; Kim T; Ahn ES; Lee SW; Eom K
    Nanoscale Res Lett; 2017 Dec; 12(1):228. PubMed ID: 28359138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical behaviour of staggered array of mineralised collagen fibrils in protein matrix: Effects of fibril dimensions and failure energy in protein matrix.
    Lai ZB; Yan C
    J Mech Behav Biomed Mater; 2017 Jan; 65():236-247. PubMed ID: 27592292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.