These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28850925)

  • 41. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content.
    Depalle B; Qin Z; Shefelbine SJ; Buehler MJ
    J Bone Miner Res; 2016 Feb; 31(2):380-90. PubMed ID: 26866939
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Designed to fail: a novel mode of collagen fibril disruption and its relevance to tissue toughness.
    Veres SP; Lee JM
    Biophys J; 2012 Jun; 102(12):2876-84. PubMed ID: 22735538
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8).
    Flynn BP; Bhole AP; Saeidi N; Liles M; Dimarzio CA; Ruberti JW
    PLoS One; 2010 Aug; 5(8):e12337. PubMed ID: 20808784
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deformation behavior and mechanical properties of amyloid protein nanowires.
    Solar M; Buehler MJ
    J Mech Behav Biomed Mater; 2013 Mar; 19():43-9. PubMed ID: 23290516
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stress related collagen ultrastructure in human aortic valves--implications for tissue engineering.
    Balguid A; Driessen NJ; Mol A; Schmitz JP; Verheyen F; Bouten CV; Baaijens FP
    J Biomech; 2008 Aug; 41(12):2612-7. PubMed ID: 18701107
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unraveling the role of Calcium ions in the mechanical properties of individual collagen fibrils.
    Pang X; Lin L; Tang B
    Sci Rep; 2017 Apr; 7():46042. PubMed ID: 28378770
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking.
    Siegmund T; Allen MR; Burr DB
    J Biomech; 2008; 41(7):1427-35. PubMed ID: 18406410
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Viscoelastic properties of model segments of collagen molecules.
    Gautieri A; Vesentini S; Redaelli A; Buehler MJ
    Matrix Biol; 2012 Mar; 31(2):141-9. PubMed ID: 22204879
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acellular and cellular high-density, collagen-fibril constructs with suprafibrillar organization.
    Blum KM; Novak T; Watkins L; Neu CP; Wallace JM; Bart ZR; Voytik-Harbin SL
    Biomater Sci; 2016 Apr; 4(4):711-23. PubMed ID: 26902645
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length.
    Wang W; Elbanna A
    Bone; 2014 Nov; 68():20-31. PubMed ID: 25108082
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.
    Reinhardt JW; Gooch KJ
    J Biomech Eng; 2014 Feb; 136(2):021024. PubMed ID: 24317298
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Equivalent stiffness after glycosaminoglycan depletion in tendon--an ultra-structural finite element model and corresponding experiments.
    Fessel G; Snedeker JG
    J Theor Biol; 2011 Jan; 268(1):77-83. PubMed ID: 20950629
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading.
    Kjaer M
    Physiol Rev; 2004 Apr; 84(2):649-98. PubMed ID: 15044685
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils.
    Kamml J; Ke CY; Acevedo C; Kammer DS
    ArXiv; 2023 Jan; ():. PubMed ID: 36776815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen.
    Collier TA; Nash A; Birch HL; de Leeuw NH
    J Biomol Struct Dyn; 2019 Feb; 37(2):537-549. PubMed ID: 29380684
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy.
    Rigozzi S; Stemmer A; Müller R; Snedeker JG
    J Struct Biol; 2011 Oct; 176(1):9-15. PubMed ID: 21771659
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.
    Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P
    J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues.
    Oxlund H; Andreassen TT
    J Anat; 1980 Dec; 131(Pt 4):611-20. PubMed ID: 7216901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.