These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28851213)

  • 1. Dynamics at a Peptide-TiO
    Polimeni M; Petridis L; Smith JC; Arcangeli C
    J Phys Chem B; 2017 Sep; 121(38):8869-8877. PubMed ID: 28851213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations.
    Huang L; Gubbins KE; Li L; Lu X
    Langmuir; 2014 Dec; 30(49):14832-40. PubMed ID: 25423593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water driven adsorption of amino acids on the (101) anatase TiO₂ surface: an ab initio study.
    Agosta L; Zollo G; Arcangeli C; Buonocore F; Gala F; Celino M
    Phys Chem Chem Phys; 2015 Jan; 17(3):1556-61. PubMed ID: 25434879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of sequence, conformation, and binding at the Peptide-titania interface as mediated by water.
    Skelton AA; Liang T; Walsh TR
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1482-91. PubMed ID: 20355952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface.
    Penna MJ; Mijajlovic M; Biggs MJ
    J Am Chem Soc; 2014 Apr; 136(14):5323-31. PubMed ID: 24506166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding affinities of amino acid analogues at the charged aqueous titania interface: implications for titania-binding peptides.
    Sultan AM; Hughes ZE; Walsh TR
    Langmuir; 2014 Nov; 30(44):13321-9. PubMed ID: 25317483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular-level understanding of the adsorption mechanism of a graphite-binding peptide at the water/graphite interface.
    Penna MJ; Mijajlovic M; Tamerler C; Biggs MJ
    Soft Matter; 2015 Jul; 11(26):5192-203. PubMed ID: 25920450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and diffusion properties of formamide/water mixture interacting with TiO2 surface.
    Dushanov E; Kholmurodov Kh; Yasuoka K
    Bioorg Chem; 2013 Oct; 50():11-6. PubMed ID: 23933355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of KRSR Peptide with Titanium Dioxide Anatase (100) Surface: A Molecular Dynamics Simulation Study.
    Tarjányi T; Bogár F; Minarovits J; Gajdács M; Tóth Z
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of aqueous environment and surface defects on Arg-Gly-Asp peptide adsorption on titanium oxide surfaces investigated by molecular dynamics simulation.
    Zhang HP; Lu X; Leng Y; Watari F; Weng J; Feng B; Qu S
    J Biomed Mater Res A; 2011 Feb; 96(2):466-76. PubMed ID: 21171166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of surface polarity on water dynamics at the water/rutile TiO₂(110) interface.
    Ohto T; Mishra A; Yoshimune S; Nakamura H; Bonn M; Nagata Y
    J Phys Condens Matter; 2014 Jun; 26(24):244102. PubMed ID: 24862873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic modeling of peptide adsorption on rutile (100) in the presence of water and of contamination by low molecular weight alcohols.
    Friedrichs W; Langel W
    Biointerphases; 2014 Sep; 9(3):031006. PubMed ID: 25280847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physisorption of α-chymotrypsin on SiO2 and TiO2: A comparative study via experiments and molecular dynamics simulations.
    Derr L; Hildebrand N; Köppen S; Kunze S; Treccani L; Dringen R; Rezwan K; Colombi Ciacchi L
    Biointerphases; 2016 Mar; 11(1):011007. PubMed ID: 26869164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations.
    Carravetta V; Monti S
    J Phys Chem B; 2006 Mar; 110(12):6160-9. PubMed ID: 16553430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption mechanism of an antimicrobial peptide on carbonaceous surfaces: A molecular dynamics study.
    Roccatano D; Sarukhanyan E; Zangi R
    J Chem Phys; 2017 Feb; 146(7):074703. PubMed ID: 28228017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-TiO(2) interaction in aqueous solution: conformational dynamics of RGD using different water models.
    Wu C; Chen M; Guo C; Zhao X; Yuan C
    J Phys Chem B; 2010 Apr; 114(13):4692-701. PubMed ID: 20235568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the adsorption of peptides to TiO2 in aqueous solutions by liquid chromatography.
    Gertler G; Fleminger G; Rapaport H
    Langmuir; 2010 May; 26(9):6457-63. PubMed ID: 20350003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitatively Identifying the Roles of Interfacial Water and Solid Surface in Governing Peptide Adsorption.
    Xu Z; Yang X; Wei Q; Zhao W; Cui B; Yang X; Sahai N
    Langmuir; 2018 Jul; 34(26):7932-7941. PubMed ID: 29888924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the peptide adsorption on ZrO2, TiZr, and TiO2 surfaces as a method for surface modification.
    Micksch T; Liebelt N; Scharnweber D; Schwenzer B
    ACS Appl Mater Interfaces; 2014 May; 6(10):7408-16. PubMed ID: 24735333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.