These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 28851244)

  • 1. Preliminary evaluation of a novel non-linear frequency compression scheme for use in children.
    Wolfe J; Duke M; Schafer EC; Rehmann J; Jha S; Allegro Baumann S; John A; Jones C
    Int J Audiol; 2017 Dec; 56(12):976-988. PubMed ID: 28851244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benefit from non-linear frequency compression hearing aids in a clinical setting: the effects of duration of experience and severity of high-frequency hearing loss.
    Hopkins K; Khanom M; Dickinson AM; Munro KJ
    Int J Audiol; 2014 Apr; 53(4):219-28. PubMed ID: 24617592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of nonlinear frequency compression for school-age children with moderate to moderately severe hearing loss.
    Wolfe J; John A; Schafer E; Nyffeler M; Boretzki M; Caraway T
    J Am Acad Audiol; 2010; 21(10):618-28. PubMed ID: 21376003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of wideband frequency responses and nonlinear frequency compression for children with cookie-bite audiometric configurations.
    John A; Wolfe J; Scollie S; Schafer E; Hudson M; Woods W; Wheeler J; Hudgens K; Neumann S
    J Am Acad Audiol; 2014; 25(10):1022-33. PubMed ID: 25514454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended bandwidth nonlinear frequency compression in Mandarin-speaking hearing-aid users.
    Tseng WH; Hsieh DL; Shih WT; Liu TC
    J Formos Med Assoc; 2018 Feb; 117(2):109-116. PubMed ID: 28392194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of wideband frequency responses and non-linear frequency compression for children with mild to moderate high-frequency hearing loss.
    Wolfe J; John A; Schafer E; Hudson M; Boretzki M; Scollie S; Woods W; Wheeler J; Hudgens K; Neumann S
    Int J Audiol; 2015 Mar; 54(3):170-81. PubMed ID: 25731582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aided cortical response, speech intelligibility, consonant perception and functional performance of young children using conventional amplification or nonlinear frequency compression.
    Zhang VW; Ching TY; Van Buynder P; Hou S; Flynn C; Burns L; McGhie K; Wong AO
    Int J Pediatr Otorhinolaryngol; 2014 Oct; 78(10):1692-700. PubMed ID: 25128447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of nonlinear frequency compression on Mandarin speech and sound-quality perception in hearing-aid users.
    Chen X; You Y; Yang J; Qian J; Lu Q; Kuehnel V; Rehmann J; Liu B; Xu L
    Int J Audiol; 2020 Jul; 59(7):524-533. PubMed ID: 32441563
    [No Abstract]   [Full Text] [Related]  

  • 9. Nonlinear frequency compression: effects on sound quality ratings of speech and music.
    Parsa V; Scollie S; Glista D; Seelisch A
    Trends Amplif; 2013 Mar; 17(1):54-68. PubMed ID: 23539261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nonlinear frequency compression on speech identification in children with hearing loss.
    Hillock-Dunn A; Buss E; Duncan N; Roush PA; Leibold LJ
    Ear Hear; 2014; 35(3):353-65. PubMed ID: 24496288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating cognitive and peripheral factors in predicting hearing-aid processing effectiveness.
    Kates JM; Arehart KH; Souza PE
    J Acoust Soc Am; 2013 Dec; 134(6):4458. PubMed ID: 25669257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speech quality and stable gain trade-offs in adaptive feedback cancellation for hearing aids.
    Lee CH; Kates JM; Rao BD; Garudadri H
    J Acoust Soc Am; 2017 Oct; 142(4):EL388. PubMed ID: 29092590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear frequency compression in hearing aids: impact on speech and language development.
    Bentler R; Walker E; McCreery R; Arenas RM; Roush P
    Ear Hear; 2014; 35(4):e143-52. PubMed ID: 24892229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of an automatic acoustic-based program classifier compared to hearing aid users' manual selection of listening programs.
    Searchfield GD; Linford T; Kobayashi K; Crowhen D; Latzel M
    Int J Audiol; 2018 Mar; 57(3):201-212. PubMed ID: 29069954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAL-NL2 empirical adjustments.
    Keidser G; Dillon H; Carter L; O'Brien A
    Trends Amplif; 2012 Dec; 16(4):211-23. PubMed ID: 23203416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Phoneme Perception Test Method for High-Frequency Hearing Aid Fitting.
    Schmitt N; Winkler A; Boretzki M; Holube I
    J Am Acad Audiol; 2016 May; 27(5):367-379. PubMed ID: 27179256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability-controlled hybrid adaptive feedback cancellation scheme for hearing aids.
    Nordholm S; Schepker H; Tran LTT; Doclo S
    J Acoust Soc Am; 2018 Jan; 143(1):150. PubMed ID: 29390746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How directional microphones affect speech recognition, listening effort and localisation for listeners with moderate-to-severe hearing loss.
    Picou EM; Ricketts TA
    Int J Audiol; 2017 Dec; 56(12):909-918. PubMed ID: 28738747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of single-microphone noise reduction schemes: can hearing impaired listeners tell the difference?
    Huber R; Bisitz T; Gerkmann T; Kiessling J; Meister H; Kollmeier B
    Int J Audiol; 2018 Jun; 57(sup3):S55-S61. PubMed ID: 28112001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a multi-channel algorithm for reducing transient sounds.
    Keshavarzi M; Baer T; Moore BCJ
    Int J Audiol; 2018 Aug; 57(8):624-631. PubMed ID: 29764254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.