These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28851269)

  • 21. Defining an essence of structure determining residue contacts in proteins.
    Sathyapriya R; Duarte JM; Stehr H; Filippis I; Lappe M
    PLoS Comput Biol; 2009 Dec; 5(12):e1000584. PubMed ID: 19997489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated procedure for contact-map-based protein structure reconstruction.
    Konopka BM; Ciombor M; Kurczynska M; Kotulska M
    J Membr Biol; 2014 May; 247(5):409-20. PubMed ID: 24682239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ISSEC: inferring contacts among protein secondary structure elements using deep object detection.
    Zhang Q; Zhu J; Ju F; Kong L; Sun S; Zheng WM; Bu D
    BMC Bioinformatics; 2020 Nov; 21(1):503. PubMed ID: 33153432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein structure prediction: combining de novo modeling with sparse experimental data.
    Latek D; Ekonomiuk D; Kolinski A
    J Comput Chem; 2007 Jul; 28(10):1668-76. PubMed ID: 17342709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting protein inter-residue contacts using composite likelihood maximization and deep learning.
    Zhang H; Zhang Q; Ju F; Zhu J; Gao Y; Xie Z; Deng M; Sun S; Zheng WM; Bu D
    BMC Bioinformatics; 2019 Oct; 20(1):537. PubMed ID: 31664895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting residue-residue contacts using random forest models.
    Li Y; Fang Y; Fang J
    Bioinformatics; 2011 Dec; 27(24):3379-84. PubMed ID: 22016406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increasing the accuracy of protein loop structure prediction with evolutionary constraints.
    Marks C; Deane CM
    Bioinformatics; 2019 Aug; 35(15):2585-2592. PubMed ID: 30535347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Method for low resolution prediction of small protein tertiary structure.
    Ortiz AR; Hu WP; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1997; ():316-27. PubMed ID: 9390302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular DAG-RNN architectures for assembling coarse protein structures.
    Pollastri G; Vullo A; Frasconi P; Baldi P
    J Comput Biol; 2006 Apr; 13(3):631-50. PubMed ID: 16706716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New Labeling Methods for Deep Learning Real-Valued Inter-Residue Distance Prediction.
    Barger J; Adhikari B
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3586-3594. PubMed ID: 34559660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of residue pairing in interacting β-strands from a predicted residue contact map.
    Mao W; Wang T; Zhang W; Gong H
    BMC Bioinformatics; 2018 Apr; 19(1):146. PubMed ID: 29673311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distance geometry generates native-like folds for small helical proteins using the consensus distances of predicted protein structures.
    Huang ES; Samudrala R; Ponder JW
    Protein Sci; 1998 Sep; 7(9):1998-2003. PubMed ID: 9761481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences.
    Hayat S; Sander C; Marks DS; Elofsson A
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5413-8. PubMed ID: 25858953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contact prediction is hardest for the most informative contacts, but improves with the incorporation of contact potentials.
    Holland J; Pan Q; Grigoryan G
    PLoS One; 2018; 13(6):e0199585. PubMed ID: 29953468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of domain boundary predictions and the prediction of intramolecular contacts in CASP8.
    Ezkurdia I; Graña O; Izarzugaza JM; Tress ML
    Proteins; 2009; 77 Suppl 9():196-209. PubMed ID: 19714769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting protein β-sheet contacts using a maximum entropy-based correlated mutation measure.
    Burkoff NS; Várnai C; Wild DL
    Bioinformatics; 2013 Mar; 29(5):580-7. PubMed ID: 23314126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SPSSM8: an accurate approach for predicting eight-state secondary structures of proteins.
    Cong P; Li D; Wang Z; Tang S; Li T
    Biochimie; 2013 Dec; 95(12):2460-4. PubMed ID: 24056076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing Predicted Contacts for Building Protein Three-Dimensional Models.
    Adhikari B; Bhattacharya D; Cao R; Cheng J
    Methods Mol Biol; 2017; 1484():115-126. PubMed ID: 27787823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.