These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 28851269)
41. Fold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments. Ortiz AR; Kolinski A; Skolnick J J Mol Biol; 1998 Mar; 277(2):419-48. PubMed ID: 9514747 [TBL] [Abstract][Full Text] [Related]
42. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming. Zhang H; Huang Q; Bei Z; Wei Y; Floudas CA Proteins; 2016 Mar; 84(3):332-48. PubMed ID: 26756402 [TBL] [Abstract][Full Text] [Related]
43. KScons: a Bayesian approach for protein residue contact prediction using the knob-socket model of protein tertiary structure. Li Q; Dahl DB; Vannucci M; Joo H; Tsai JW Bioinformatics; 2016 Dec; 32(24):3774-3781. PubMed ID: 27559156 [TBL] [Abstract][Full Text] [Related]
44. Folding of proteins with an all-atom Go-model. Wu L; Zhang J; Qin M; Liu F; Wang W J Chem Phys; 2008 Jun; 128(23):235103. PubMed ID: 18570532 [TBL] [Abstract][Full Text] [Related]
45. Partial unfolding and refolding for structure refinement: A unified approach of geometric simulations and molecular dynamics. Kumar A; Campitelli P; Thorpe MF; Ozkan SB Proteins; 2015 Dec; 83(12):2279-92. PubMed ID: 26476100 [TBL] [Abstract][Full Text] [Related]
46. Reconstruction of 3D structures from protein contact maps. Vassura M; Margara L; Di Lena P; Medri F; Fariselli P; Casadio R IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(3):357-67. PubMed ID: 18670040 [TBL] [Abstract][Full Text] [Related]
47. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins. Ortiz AR; Kolinski A; Skolnick J Pac Symp Biocomput; 1998; ():377-88. PubMed ID: 9697197 [TBL] [Abstract][Full Text] [Related]
48. Structural features can be unconserved in proteins with similar folds. An analysis of side-chain to side-chain contacts secondary structure and accessibility. Russell RB; Barton GJ J Mol Biol; 1994 Dec; 244(3):332-50. PubMed ID: 7966343 [TBL] [Abstract][Full Text] [Related]
49. Analysis of protein contacts into Protein Units. Faure G; Bornot A; de Brevern AG Biochimie; 2009 Jul; 91(7):876-87. PubMed ID: 19383526 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of features for catalytic residue prediction in novel folds. Youn E; Peters B; Radivojac P; Mooney SD Protein Sci; 2007 Feb; 16(2):216-26. PubMed ID: 17189479 [TBL] [Abstract][Full Text] [Related]
51. Co-evolutionary distance predictions contain flexibility information. Schwarz D; Georges G; Kelm S; Shi J; Vangone A; Deane CM Bioinformatics; 2021 Dec; 38(1):65-72. PubMed ID: 34383892 [TBL] [Abstract][Full Text] [Related]
52. Prediction of Structures and Interactions from Genome Information. Miyazawa S Adv Exp Med Biol; 2018; 1105():123-152. PubMed ID: 30617827 [TBL] [Abstract][Full Text] [Related]
53. Distance-dependent hydrophobic-hydrophobic contacts in protein folding simulations. Onofrio A; Parisi G; Punzi G; Todisco S; Di Noia MA; Bossis F; Turi A; De Grassi A; Pierri CL Phys Chem Chem Phys; 2014 Sep; 16(35):18907-17. PubMed ID: 25083519 [TBL] [Abstract][Full Text] [Related]
54. The complexity and accuracy of discrete state models of protein structure. Park BH; Levitt M J Mol Biol; 1995 Jun; 249(2):493-507. PubMed ID: 7783205 [TBL] [Abstract][Full Text] [Related]
55. Evolution and similarity evaluation of protein structures in contact map space. Gupta N; Mangal N; Biswas S Proteins; 2005 May; 59(2):196-204. PubMed ID: 15726585 [TBL] [Abstract][Full Text] [Related]
56. Towards accurate residue-residue hydrophobic contact prediction for alpha helical proteins via integer linear optimization. Rajgaria R; McAllister SR; Floudas CA Proteins; 2009 Mar; 74(4):929-47. PubMed ID: 18767158 [TBL] [Abstract][Full Text] [Related]
57. Novel approach for alpha-helical topology prediction in globular proteins: generation of interhelical restraints. McAllister SR; Mickus BE; Klepeis JL; Floudas CA Proteins; 2006 Dec; 65(4):930-52. PubMed ID: 17029234 [TBL] [Abstract][Full Text] [Related]
58. Protein folding rates estimated from contact predictions. Punta M; Rost B J Mol Biol; 2005 May; 348(3):507-12. PubMed ID: 15826649 [TBL] [Abstract][Full Text] [Related]
59. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter. Yang J; Jin QY; Zhang B; Shen HB Bioinformatics; 2016 Aug; 32(16):2435-43. PubMed ID: 27153618 [TBL] [Abstract][Full Text] [Related]