BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28851378)

  • 1. In silico prediction of novel therapeutic targets using gene-disease association data.
    Ferrero E; Dunham I; Sanseau P
    J Transl Med; 2017 Aug; 15(1):182. PubMed ID: 28851378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery.
    Serrano Nájera G; Narganes Carlón D; Crowther DJ
    Sci Rep; 2021 Aug; 11(1):15747. PubMed ID: 34344904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing machine learning algorithms to predict subject genetic mutation class from in silico models of neuronal networks.
    Kress GT; Chan F; Garcia CA; Merrifield WS
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):290. PubMed ID: 36352381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of novel mouse TLR9 agonists using a random forest approach.
    Khanna V; Li L; Fung J; Ranganathan S; Petrovsky N
    BMC Mol Cell Biol; 2019 Dec; 20(Suppl 2):56. PubMed ID: 31856726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empowering the discovery of novel target-disease associations via machine learning approaches in the open targets platform.
    Han Y; Klinger K; Rajpal DK; Zhu C; Teeple E
    BMC Bioinformatics; 2022 Jun; 23(1):232. PubMed ID: 35710324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database.
    Wang L; Ma C; Wipf P; Liu H; Su W; Xie XQ
    AAPS J; 2013 Apr; 15(2):395-406. PubMed ID: 23292636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting drug-disease associations via sigmoid kernel-based convolutional neural networks.
    Jiang HJ; You ZH; Huang YA
    J Transl Med; 2019 Nov; 17(1):382. PubMed ID: 31747915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential gene prediction using limited gene essentiality information-An integrative semi-supervised machine learning strategy.
    Nandi S; Ganguli P; Sarkar RR
    PLoS One; 2020; 15(11):e0242943. PubMed ID: 33253254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of active molecules against Mycobacterium tuberculosis through machine learning.
    Ye Q; Chai X; Jiang D; Yang L; Shen C; Zhang X; Li D; Cao D; Hou T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network.
    Jiang HJ; Huang YA; You ZH
    Sci Rep; 2020 Mar; 10(1):4972. PubMed ID: 32188871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
    Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M
    Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting clinically promising therapeutic hypotheses using tensor factorization.
    Yao J; Hurle MR; Nelson MR; Agarwal P
    BMC Bioinformatics; 2019 Feb; 20(1):69. PubMed ID: 30736745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide investigation of gene-cancer associations for the prediction of novel therapeutic targets in oncology.
    Bazaga A; Leggate D; Weisser H
    Sci Rep; 2020 Jul; 10(1):10787. PubMed ID: 32612205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier.
    Zhang Y; Jiang Z; Chen C; Wei Q; Gu H; Yu B
    Interdiscip Sci; 2022 Jun; 14(2):311-330. PubMed ID: 34731411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.