These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 28851517)

  • 1. An integrative appraisal of mechano-electric feedback mechanisms in the heart.
    Timmermann V; Dejgaard LA; Haugaa KH; Edwards AG; Sundnes J; McCulloch AD; Wall ST
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):404-417. PubMed ID: 28851517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretch-activated current in human atrial myocytes and Na
    Zhan H; Zhang J; Jiao A; Wang Q
    Biomed Eng Online; 2019 Oct; 18(1):104. PubMed ID: 31653259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of mechano-electric feedback mechanisms on whole-heart activation, repolarization, and tension.
    Gerach T; Loewe A
    J Physiol; 2024 Jan; ():. PubMed ID: 38185911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechano-electrical feedback in the clinical setting: Current perspectives.
    Orini M; Nanda A; Yates M; Di Salvo C; Roberts N; Lambiase PD; Taggart P
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):365-375. PubMed ID: 28587763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological effects of stretch-activated ion channels: a systematic computational characterization.
    Buonocunto M; Lyon A; Delhaas T; Heijman J; Lumens J
    J Physiol; 2023 Sep; ():. PubMed ID: 37665242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular mechanisms of cardiac mechano-electric feedback in a mathematical model.
    Kohl P; Day K; Noble D
    Can J Cardiol; 1998 Jan; 14(1):111-9. PubMed ID: 9487283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac mechano-electric feedback in man: clinical relevance.
    Taggart P; Sutton PM
    Prog Biophys Mol Biol; 1999; 71(1):139-54. PubMed ID: 10070214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechano-electrical feedback explains T-wave morphology and optimizes cardiac pump function: insight from a multi-scale model.
    Hermeling E; Delhaas T; Prinzen FW; Kuijpers NH
    Prog Biophys Mol Biol; 2012; 110(2-3):359-71. PubMed ID: 22835663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression of stretch-activated channels and mechanoelectric feedback in the heart.
    Kelly D; Mackenzie L; Hunter P; Smaill B; Saint DA
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):642-8. PubMed ID: 16789934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The zebrafish as a novel animal model to study the molecular mechanisms of mechano-electrical feedback in the heart.
    Werdich AA; Brzezinski A; Jeyaraj D; Khaled Sabeh M; Ficker E; Wan X; McDermott BM; Macrae CA; Rosenbaum DS
    Prog Biophys Mol Biol; 2012; 110(2-3):154-65. PubMed ID: 22835662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechano-electric feedback and arrhythmias.
    Ravens U
    Prog Biophys Mol Biol; 2003; 82(1-3):255-66. PubMed ID: 12732284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of mechano-electrical feedback on the onset of alternans: A computational study.
    Hazim A; Belhamadia Y; Dubljevic S
    Chaos; 2019 Jun; 29(6):063126. PubMed ID: 31266317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A framework for modeling of mechano-electrical feedback mechanisms of cardiac myocytes and tissues.
    Sachse FB; Hunter GA; Weiss DL; Seemann G
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():160-3. PubMed ID: 18001913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechano-electric feedback effects in a three-dimensional (3D) model of the contracting cardiac ventricle.
    Amar A; Zlochiver S; Barnea O
    PLoS One; 2018; 13(1):e0191238. PubMed ID: 29342222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrhythmogenic Current Generation by Myofilament-Triggered Ca
    Timmermann V; Edwards AG; Wall ST; Sundnes J; McCulloch AD
    Biophys J; 2019 Dec; 117(12):2471-2485. PubMed ID: 31810659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiating the effects of β-adrenergic stimulation and stretch on calcium and force dynamics using a novel electromechanical cardiomyocyte model.
    Lyon A; Dupuis LJ; Arts T; Crijns HJGM; Prinzen FW; Delhaas T; Heijman J; Lumens J
    Am J Physiol Heart Circ Physiol; 2020 Sep; 319(3):H519-H530. PubMed ID: 32734816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechano-electric feedback in one-dimensional model of myocardium.
    Vikulova NA; Katsnelson LB; Kursanov AG; Solovyova O; Markhasin VS
    J Math Biol; 2016 Aug; 73(2):335-66. PubMed ID: 26687545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback.
    Pfeiffer ER; Tangney JR; Omens JH; McCulloch AD
    J Biomech Eng; 2014 Feb; 136(2):021007. PubMed ID: 24337452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modelling of mechano-electric feedback and its arrhythmogenic effects in human ventricular models.
    Lee Y; Cansız B; Kaliske M
    Comput Methods Biomech Biomed Engin; 2022 Nov; 25(15):1767-1783. PubMed ID: 35238688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechano-calcium and mechano-electric feedbacks in the human cardiomyocyte analyzed in a mathematical model.
    Balakina-Vikulova NA; Panfilov A; Solovyova O; Katsnelson LB
    J Physiol Sci; 2020 Feb; 70(1):12. PubMed ID: 32070290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.