BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28851583)

  • 21. Ascorbic acid, but not dehydroascorbic acid increases intracellular vitamin C content to decrease Hypoxia Inducible Factor -1 alpha activity and reduce malignant potential in human melanoma.
    Fischer AP; Miles SL
    Biomed Pharmacother; 2017 Feb; 86():502-513. PubMed ID: 28012930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of vitamin C transport.
    Wilson JX
    Annu Rev Nutr; 2005; 25():105-25. PubMed ID: 16011461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C.
    Upston JM; Karjalainen A; Bygrave FL; Stocker R
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):49-56. PubMed ID: 10432299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Requirement for GSH in recycling of ascorbic acid in endothelial cells.
    May JM; Qu Z; Li X
    Biochem Pharmacol; 2001 Oct; 62(7):873-81. PubMed ID: 11543722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism.
    Cisternas P; Silva-Alvarez C; Martínez F; Fernandez E; Ferrada L; Oyarce K; Salazar K; Bolaños JP; Nualart F
    J Neurochem; 2014 May; 129(4):663-71. PubMed ID: 24460956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system.
    Astuya A; Caprile T; Castro M; Salazar K; García Mde L; Reinicke K; Rodríguez F; Vera JC; Millán C; Ulloa V; Low M; Martínez F; Nualart F
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):146-56. PubMed ID: 15578707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accumulation of ascorbate by endocrine-regulated and glucose-sensitive transport of dehydroascorbic acid in luteinized rat ovarian cells.
    Kodaman PH; Aten RF; Behrman HR
    Biol Reprod; 1998 Feb; 58(2):407-13. PubMed ID: 9475396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Cellular and intracellular transport of vitamin C. The physiologic aspects].
    Szarka A; Lőrincz T
    Orv Hetil; 2013 Oct; 154(42):1651-6. PubMed ID: 24121217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzyme-dependent ascorbate recycling in human erythrocytes: role of thioredoxin reductase.
    Mendiratta S; Qu ZC; May JM
    Free Radic Biol Med; 1998 Jul; 25(2):221-8. PubMed ID: 9667500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs.
    Frikke-Schmidt H; Tveden-Nyborg P; Lykkesfeldt J
    Redox Biol; 2016 Apr; 7():8-13. PubMed ID: 26609560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies with low micromolar levels of ascorbic and dehydroascorbic acid fail to unravel a preferential route for vitamin C uptake and accumulation in U937 cells.
    Azzolini C; Fiorani M; Guidarelli A; Cantoni O
    Br J Nutr; 2012 Mar; 107(5):691-6. PubMed ID: 21794197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular pathways for transport and efflux of ascorbate and dehydroascorbate.
    Corti A; Casini AF; Pompella A
    Arch Biochem Biophys; 2010 Aug; 500(2):107-15. PubMed ID: 20494648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ascorbate- and dehydroascorbic acid-mediated reduction of free radicals in the human erythrocyte.
    Mehlhorn RJ
    J Biol Chem; 1991 Feb; 266(5):2724-31. PubMed ID: 1993652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport and action of ascorbate at the plant plasma membrane.
    Horemans N; Foyer CH; Asard H
    Trends Plant Sci; 2000 Jun; 5(6):263-7. PubMed ID: 10838618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport mechanisms for vitamin C in the JAR human placental choriocarcinoma cell line.
    Prasad PD; Huang W; Wang H; Leibach FH; Ganapathy V
    Biochim Biophys Acta; 1998 Feb; 1369(1):141-51. PubMed ID: 9528682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dehydroascorbic acid reduction in several tissues and cultured hepatocytes of the chicken.
    Sasaki K; Kitaguchi Y; Koga K; Narita R; Fukuda T; Aoyagi Y
    Biosci Biotechnol Biochem; 2001 Oct; 65(10):2288-90. PubMed ID: 11758923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deficient transport of dehydroascorbic acid in the glucose transporter protein syndrome.
    Klepper J; Vera JC; De Vivo DC
    Ann Neurol; 1998 Aug; 44(2):286-7. PubMed ID: 9708557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of ascorbic acid recycling in human erythrocytes.
    May JM; Qu Z; Morrow JD
    Biochim Biophys Acta; 2001 Oct; 1528(2-3):159-66. PubMed ID: 11687303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sodium-dependent ascorbic and dehydroascorbic acid uptake by SV-40-transformed retinal pigment epithelial cells.
    Lam KW; Yu HS; Glickman RD; Lin T
    Ophthalmic Res; 1993; 25(2):100-7. PubMed ID: 8391673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial uptake and recycling of ascorbic acid.
    Li X; Cobb CE; Hill KE; Burk RF; May JM
    Arch Biochem Biophys; 2001 Mar; 387(1):143-53. PubMed ID: 11368176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.