These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 28851639)
1. Polyelectrolyte complex of carboxymethyl gum katira-chitosan: Preparation and characterization. Minkal ; Ahuja M; Bhatt DC Int J Biol Macromol; 2018 Jan; 106():1184-1191. PubMed ID: 28851639 [TBL] [Abstract][Full Text] [Related]
2. Carboxymethyl gum kondagogu-chitosan polyelectrolyte complex nanoparticles: preparation and characterization. Kumar A; Ahuja M Int J Biol Macromol; 2013 Nov; 62():80-4. PubMed ID: 23994791 [TBL] [Abstract][Full Text] [Related]
3. Gum ghatti-chitosan polyelectrolyte nanoparticles: preparation and characterization. Shelly ; Ahuja M; Kumar A Int J Biol Macromol; 2013 Oct; 61():411-5. PubMed ID: 23924761 [TBL] [Abstract][Full Text] [Related]
4. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic. Hu Q; Wang T; Zhou M; Xue J; Luo Y Int J Biol Macromol; 2016 Nov; 92():812-819. PubMed ID: 27475234 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of anti-inflammatory activity of glycyrrhizic acid by encapsulation in chitosan-katira gum nanoparticles. Bernela M; Ahuja M; Thakur R Eur J Pharm Biopharm; 2016 Aug; 105():141-7. PubMed ID: 27287555 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of carboxymethyl moringa gum as nanometric carrier. Rimpy ; Abhishek ; Ahuja M Carbohydr Polym; 2017 Oct; 174():896-903. PubMed ID: 28821146 [TBL] [Abstract][Full Text] [Related]
7. Nano polyelectrolyte complexes of carboxymethyl dextran and chitosan to improve chitosan-mediated delivery of miR-145. Tekie FS; Kiani M; Zakerian A; Pilevarian F; Assali A; Soleimani M; Dinarvand R; Arefian E; Atashi A; Amini M; Atyabi F Carbohydr Polym; 2017 Mar; 159():66-75. PubMed ID: 28038755 [TBL] [Abstract][Full Text] [Related]
8. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization. Huang GQ; Cheng LY; Xiao JX; Wang SQ; Han XN J Biomater Appl; 2016 Aug; 31(2):193-204. PubMed ID: 27231264 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Antitumor Efficacy of Chitosan-Tamarind Gum Polysaccharide Polyelectrolyte Complex Stabilized Nanoparticles of Simvastatin. Malviya R; Raj S; Fuloria S; Subramaniyan V; Sathasivam K; Kumari U; Unnikrishnan Meenakshi D; Porwal O; Hari Kumar D; Singh A; Chakravarthi S; Kumar Fuloria N Int J Nanomedicine; 2021; 16():2533-2553. PubMed ID: 33824590 [TBL] [Abstract][Full Text] [Related]
11. Nasal inserts containing ondansetron hydrochloride based on Chitosan-gellan gum polyelectrolyte complex: In vitro-in vivo studies. Sonje AG; Mahajan HS Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():329-335. PubMed ID: 27127060 [TBL] [Abstract][Full Text] [Related]
12. Chitosan-carboxymethyl tamarind gum in situ polyelectrolyte complex-based floating capsules of ofloxacin: In vitro-in vivo studies. Samanta R; Nayak S; Das B; Nayak AK Int J Biol Macromol; 2023 Dec; 253(Pt 8):127507. PubMed ID: 37865378 [TBL] [Abstract][Full Text] [Related]
13. Chitosan/pectin/gum Arabic polyelectrolyte complex: process-dependent appearance, microstructure analysis and its application. Tsai RY; Chen PW; Kuo TY; Lin CM; Wang DM; Hsien TY; Hsieh HJ Carbohydr Polym; 2014 Jan; 101():752-9. PubMed ID: 24299835 [TBL] [Abstract][Full Text] [Related]
14. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates. Huang GQ; Du YL; Xiao JX; Wang GY Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718 [TBL] [Abstract][Full Text] [Related]
15. Formation and characterization of polyelectrolyte complex synthesized by chitosan and carboxylic curdlan for 5-fluorouracil delivery. Yan JK; Qiu WY; Wang YY; Wu LX; Cheung PCK Int J Biol Macromol; 2018 Feb; 107(Pt A):397-405. PubMed ID: 28882758 [TBL] [Abstract][Full Text] [Related]
16. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Luo Y; Wang Q Int J Biol Macromol; 2014 Mar; 64():353-67. PubMed ID: 24360899 [TBL] [Abstract][Full Text] [Related]
17. Chitosan⁻Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation. Roy JC; Ferri A; Giraud S; Jinping G; Salaün F Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149641 [TBL] [Abstract][Full Text] [Related]
18. Chitosan based in situ forming polyelectrolyte complexes: A potential sustained drug delivery polymeric carrier for high dose drugs. Lal N; Dubey J; Gaur P; Verma N; Verma A Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():491-498. PubMed ID: 28629045 [TBL] [Abstract][Full Text] [Related]
19. Nanoparticles and Colloidal Hydrogels of Chitosan-Caseinate Polyelectrolyte Complexes for Drug-Controlled Release Applications. Lall A; Kamdem Tamo A; Doench I; David L; Nunes de Oliveira P; Gorzelanny C; Osorio-Madrazo A Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32764340 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of chitosan/xanthan gum polyelectrolyte complexes potential for pH-dependent oral delivery of escin. Ćirić A; Budinčić JM; Medarević Đ; Dobričić V; Rmandić M; Barudžija T; Malenović A; Petrović L; Djekic L Int J Biol Macromol; 2022 Nov; 221():48-60. PubMed ID: 36058395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]