BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28851639)

  • 1. Polyelectrolyte complex of carboxymethyl gum katira-chitosan: Preparation and characterization.
    Minkal ; Ahuja M; Bhatt DC
    Int J Biol Macromol; 2018 Jan; 106():1184-1191. PubMed ID: 28851639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carboxymethyl gum kondagogu-chitosan polyelectrolyte complex nanoparticles: preparation and characterization.
    Kumar A; Ahuja M
    Int J Biol Macromol; 2013 Nov; 62():80-4. PubMed ID: 23994791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gum ghatti-chitosan polyelectrolyte nanoparticles: preparation and characterization.
    Shelly ; Ahuja M; Kumar A
    Int J Biol Macromol; 2013 Oct; 61():411-5. PubMed ID: 23924761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic.
    Hu Q; Wang T; Zhou M; Xue J; Luo Y
    Int J Biol Macromol; 2016 Nov; 92():812-819. PubMed ID: 27475234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of anti-inflammatory activity of glycyrrhizic acid by encapsulation in chitosan-katira gum nanoparticles.
    Bernela M; Ahuja M; Thakur R
    Eur J Pharm Biopharm; 2016 Aug; 105():141-7. PubMed ID: 27287555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of carboxymethyl moringa gum as nanometric carrier.
    Rimpy ; Abhishek ; Ahuja M
    Carbohydr Polym; 2017 Oct; 174():896-903. PubMed ID: 28821146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano polyelectrolyte complexes of carboxymethyl dextran and chitosan to improve chitosan-mediated delivery of miR-145.
    Tekie FS; Kiani M; Zakerian A; Pilevarian F; Assali A; Soleimani M; Dinarvand R; Arefian E; Atashi A; Amini M; Atyabi F
    Carbohydr Polym; 2017 Mar; 159():66-75. PubMed ID: 28038755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization.
    Huang GQ; Cheng LY; Xiao JX; Wang SQ; Han XN
    J Biomater Appl; 2016 Aug; 31(2):193-204. PubMed ID: 27231264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Antitumor Efficacy of Chitosan-Tamarind Gum Polysaccharide Polyelectrolyte Complex Stabilized Nanoparticles of Simvastatin.
    Malviya R; Raj S; Fuloria S; Subramaniyan V; Sathasivam K; Kumari U; Unnikrishnan Meenakshi D; Porwal O; Hari Kumar D; Singh A; Chakravarthi S; Kumar Fuloria N
    Int J Nanomedicine; 2021; 16():2533-2553. PubMed ID: 33824590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan-gum arabic polyelectrolyte complex films: physicochemical, mechanical and mucoadhesive properties.
    Sakloetsakun D; Preechagoon D; Bernkop-Schnürch A; Pongjanyakul T
    Pharm Dev Technol; 2016 Aug; 21(5):590-9. PubMed ID: 25886079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nasal inserts containing ondansetron hydrochloride based on Chitosan-gellan gum polyelectrolyte complex: In vitro-in vivo studies.
    Sonje AG; Mahajan HS
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():329-335. PubMed ID: 27127060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan-carboxymethyl tamarind gum in situ polyelectrolyte complex-based floating capsules of ofloxacin: In vitro-in vivo studies.
    Samanta R; Nayak S; Das B; Nayak AK
    Int J Biol Macromol; 2023 Dec; 253(Pt 8):127507. PubMed ID: 37865378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan/pectin/gum Arabic polyelectrolyte complex: process-dependent appearance, microstructure analysis and its application.
    Tsai RY; Chen PW; Kuo TY; Lin CM; Wang DM; Hsien TY; Hsieh HJ
    Carbohydr Polym; 2014 Jan; 101():752-9. PubMed ID: 24299835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates.
    Huang GQ; Du YL; Xiao JX; Wang GY
    Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and characterization of polyelectrolyte complex synthesized by chitosan and carboxylic curdlan for 5-fluorouracil delivery.
    Yan JK; Qiu WY; Wang YY; Wu LX; Cheung PCK
    Int J Biol Macromol; 2018 Feb; 107(Pt A):397-405. PubMed ID: 28882758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery.
    Luo Y; Wang Q
    Int J Biol Macromol; 2014 Mar; 64():353-67. PubMed ID: 24360899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan⁻Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation.
    Roy JC; Ferri A; Giraud S; Jinping G; Salaün F
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan based in situ forming polyelectrolyte complexes: A potential sustained drug delivery polymeric carrier for high dose drugs.
    Lal N; Dubey J; Gaur P; Verma N; Verma A
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():491-498. PubMed ID: 28629045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles and Colloidal Hydrogels of Chitosan-Caseinate Polyelectrolyte Complexes for Drug-Controlled Release Applications.
    Lall A; Kamdem Tamo A; Doench I; David L; Nunes de Oliveira P; Gorzelanny C; Osorio-Madrazo A
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32764340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of chitosan/xanthan gum polyelectrolyte complexes potential for pH-dependent oral delivery of escin.
    Ćirić A; Budinčić JM; Medarević Đ; Dobričić V; Rmandić M; Barudžija T; Malenović A; Petrović L; Djekic L
    Int J Biol Macromol; 2022 Nov; 221():48-60. PubMed ID: 36058395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.