These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28851929)

  • 21. Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut (
    Soni P; Gangurde SS; Ortega-Beltran A; Kumar R; Parmar S; Sudini HK; Lei Y; Ni X; Huai D; Fountain JC; Njoroge S; Mahuku G; Radhakrishnan T; Zhuang W; Guo B; Liao B; Singam P; Pandey MK; Bandyopadhyay R; Varshney RK
    Front Microbiol; 2020; 11():227. PubMed ID: 32194520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trichoderma viride induces pathogenesis related defense response against rot pathogen infection in groundnut (Arachis hypogaea L.).
    Gajera HP; Savaliya DD; Patel SV; Golakiya BA
    Infect Genet Evol; 2015 Aug; 34():314-25. PubMed ID: 26160540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds.
    Korani WA; Chu Y; Holbrook C; Clevenger J; Ozias-Akins P
    Toxins (Basel); 2017 Jul; 9(7):. PubMed ID: 28704974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic analysis reveals an aflatoxin-triggered immune response in cotyledons of Arachis hypogaea infected with Aspergillus flavus.
    Wang Z; Yan S; Liu C; Chen F; Wang T
    J Proteome Res; 2012 May; 11(5):2739-53. PubMed ID: 22424419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insight into Genes Regulating Postharvest Aflatoxin Contamination of Tetraploid Peanut from Transcriptional Profiling.
    Korani W; Chu Y; Holbrook CC; Ozias-Akins P
    Genetics; 2018 May; 209(1):143-156. PubMed ID: 29545468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The
    Lohmar JM; Puel O; Cary JW; Calvo AM
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635379
    [No Abstract]   [Full Text] [Related]  

  • 27. Growth and Toxigenicity of
    Tengey TK; Kankam F; Ndela DN; Frempong D; Appaw WO
    Toxins (Basel); 2022 Aug; 14(8):. PubMed ID: 36006198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative transcriptome profiling and co-expression network analysis uncover the key genes associated withearly-stage resistance to Aspergillus flavus in maize.
    Liu H; Wu H; Wang Y; Wang H; Chen S; Yin Z
    BMC Plant Biol; 2021 May; 21(1):216. PubMed ID: 33985439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aflatoxin contamination of groundnuts in Sudan.
    Haq Elamin NH; Abdel-Rahim AM; Khalid AE
    Mycopathologia; 1988 Oct; 104(1):25-31. PubMed ID: 3146026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels.
    Gilbert MK; Majumdar R; Rajasekaran K; Chen ZY; Wei Q; Sickler CM; Lebar MD; Cary JW; Frame BR; Wang K
    Planta; 2018 Jun; 247(6):1465-1473. PubMed ID: 29541880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Transcriptome Analysis Identified Candidate Genes for Late Leaf Spot Resistance and Cause of Defoliation in Groundnut.
    Gangurde SS; Nayak SN; Joshi P; Purohit S; Sudini HK; Chitikineni A; Hong Y; Guo B; Chen X; Pandey MK; Varshney RK
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.).
    Yu B; Huai D; Huang L; Kang Y; Ren X; Chen Y; Zhou X; Luo H; Liu N; Chen W; Lei Y; Pandey MK; Sudini H; Varshney RK; Liao B; Jiang H
    BMC Genet; 2019 Mar; 20(1):32. PubMed ID: 30866805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution and characterisation of the AhRAF4 NB-ARC gene family induced by Aspergillus flavus inoculation and abiotic stresses in peanut.
    Deng Y; Chen H; Zhang C; Cai T; Zhang B; Zhou S; Fountain JC; Pan RL; Guo B; Zhuang WJ
    Plant Biol (Stuttg); 2018 Jul; 20(4):737-750. PubMed ID: 29603544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The MAP kinase AflSlt2 modulates aflatoxin biosynthesis and peanut infection in the fungus Aspergillus flavus.
    Zhang F; Geng L; Deng J; Huang L; Zhong H; Xin S; Fasoyin OE; Wang S
    Int J Food Microbiol; 2020 Jun; 322():108576. PubMed ID: 32240921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.
    Bedre R; Rajasekaran K; Mangu VR; Sanchez Timm LE; Bhatnagar D; Baisakh N
    PLoS One; 2015; 10(9):e0138025. PubMed ID: 26366857
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of genes differentially expressed during early interactions between the stem rot fungus (Sclerotium rolfsii) and peanut (Arachis hypogaea) cultivars with increasing disease resistance levels.
    Jogi A; Kerry JW; Brenneman TB; Leebens-Mack JH; Gold SE
    Microbiol Res; 2016 Mar; 184():1-12. PubMed ID: 26856448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops.
    Bhatnagar-Mathur P; Sunkara S; Bhatnagar-Panwar M; Waliyar F; Sharma KK
    Plant Sci; 2015 May; 234():119-32. PubMed ID: 25804815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of Aspergillus flavus and A. parasiticus with Salmonella spp. isolated from peanuts.
    von Hertwig AM; Iamanaka BT; Amorim Neto DP; Rezende JB; Martins LM; Taniwaki MH; Nascimento MS
    Int J Food Microbiol; 2020 Sep; 328():108666. PubMed ID: 32454365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aspergillus section Flavi community structure in Zambia influences aflatoxin contamination of maize and groundnut.
    Kachapulula PW; Akello J; Bandyopadhyay R; Cotty PJ
    Int J Food Microbiol; 2017 Nov; 261():49-56. PubMed ID: 28915412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antioxidant defense response induced by Trichoderma viride against Aspergillus niger Van Tieghem causing collar rot in groundnut (Arachis hypogaea L.).
    Gajera HP; Katakpara ZA; Patel SV; Golakiya BA
    Microb Pathog; 2016 Feb; 91():26-34. PubMed ID: 26620080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.