These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28852415)

  • 1. Model checking in multiple imputation: an overview and case study.
    Nguyen CD; Carlin JB; Lee KJ
    Emerg Themes Epidemiol; 2017; 14():8. PubMed ID: 28852415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posterior predictive checking of multiple imputation models.
    Nguyen CD; Lee KJ; Carlin JB
    Biom J; 2015 Jul; 57(4):676-94. PubMed ID: 25939490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphical and numerical diagnostic tools to assess multiple imputation models by posterior predictive checking.
    Cai M; van Buuren S; Vink G
    Heliyon; 2023 Jun; 9(6):e17077. PubMed ID: 37360073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphical and numerical diagnostic tools to assess suitability of multiple imputations and imputation models.
    Bondarenko I; Raghunathan T
    Stat Med; 2016 Jul; 35(17):3007-20. PubMed ID: 26952693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple imputation for model checking: completed-data plots with missing and latent data.
    Gelman A; Van Mechelen I; Verbeke G; Heitjan DF; Meulders M
    Biometrics; 2005 Mar; 61(1):74-85. PubMed ID: 15737080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple imputation methods for handling incomplete longitudinal and clustered data where the target analysis is a linear mixed effects model.
    Huque MH; Moreno-Betancur M; Quartagno M; Simpson JA; Carlin JB; Lee KJ
    Biom J; 2020 Mar; 62(2):444-466. PubMed ID: 31919921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study.
    De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnosing problems with imputation models using the Kolmogorov-Smirnov test: a simulation study.
    Nguyen CD; Carlin JB; Lee KJ
    BMC Med Res Methodol; 2013 Nov; 13():144. PubMed ID: 24252653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple imputation in the presence of high-dimensional data.
    Zhao Y; Long Q
    Stat Methods Med Res; 2016 Oct; 25(5):2021-2035. PubMed ID: 24275026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The multiple imputation method: a case study involving secondary data analysis.
    Walani SR; Cleland CM
    Nurse Res; 2015 May; 22(5):13-9. PubMed ID: 25976532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnosing imputation models by applying target analyses to posterior replicates of completed data.
    He Y; Zaslavsky AM
    Stat Med; 2012 Jan; 31(1):1-18. PubMed ID: 22139814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of multiple imputation methods for missing data in longitudinal studies.
    Huque MH; Carlin JB; Simpson JA; Lee KJ
    BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple imputation for handling missing outcome data when estimating the relative risk.
    Sullivan TR; Lee KJ; Ryan P; Salter AB
    BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of multiple imputation strategies for handling missing data in multi-item scales: Guidance for longitudinal studies.
    Mainzer R; Apajee J; Nguyen CD; Carlin JB; Lee KJ
    Stat Med; 2021 Sep; 40(21):4660-4674. PubMed ID: 34102709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study.
    De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2019 Jan; 19(1):14. PubMed ID: 30630434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practical strategies for handling breakdown of multiple imputation procedures.
    Nguyen CD; Carlin JB; Lee KJ
    Emerg Themes Epidemiol; 2021 Apr; 18(1):5. PubMed ID: 33794933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A note on dealing with missing standard errors in meta-analyses of continuous outcome measures in WinBUGS.
    Stevens JW
    Pharm Stat; 2011; 10(4):374-8. PubMed ID: 21394888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple imputation for missing data via sequential regression trees.
    Burgette LF; Reiter JP
    Am J Epidemiol; 2010 Nov; 172(9):1070-6. PubMed ID: 20841346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach.
    Erler NS; Rizopoulos D; Rosmalen Jv; Jaddoe VW; Franco OH; Lesaffre EM
    Stat Med; 2016 Jul; 35(17):2955-74. PubMed ID: 27042954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple imputation in the presence of non-normal data.
    Lee KJ; Carlin JB
    Stat Med; 2017 Feb; 36(4):606-617. PubMed ID: 27862164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.