BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28852596)

  • 21. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta).
    Cremen MCM; Leliaert F; Marcelino VR; Verbruggen H
    Genome Biol Evol; 2018 Apr; 10(4):1048-1061. PubMed ID: 29635329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The inflated mitochondrial genomes of siphonous green algae reflect processes driving expansion of noncoding DNA and proliferation of introns.
    Repetti SI; Jackson CJ; Judd LM; Wick RR; Holt KE; Verbruggen H
    PeerJ; 2020; 8():e8273. PubMed ID: 31915577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and comparative analysis of the chloroplast alpha-subunit gene of DNA-dependent RNA polymerase from seven Euglena species.
    Sheveleva EV; Giordani NV; Hallick RB
    Nucleic Acids Res; 2002 Mar; 30(5):1247-54. PubMed ID: 11861918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogenetic patterns of gene rearrangements in four mitochondrial genomes from the green algal family Hydrodictyaceae (Sphaeropleales, Chlorophyceae).
    Farwagi AA; Fučíková K; McManus HA
    BMC Genomics; 2015 Oct; 16():826. PubMed ID: 26486870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The complete chloroplast genome of the green algae Hariotina reticulata (Scenedesmaceae, Sphaeropleales, Chlorophyta).
    He L; Wang Z; Lou S; Lin X; Hu F
    Genes Genomics; 2018 May; 40(5):543-552. PubMed ID: 29892956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chloroplast gene arrangement variation within a closely related group of green algae (Trebouxiophyceae, Chlorophyta).
    Letsch MR; Lewis LA
    Mol Phylogenet Evol; 2012 Sep; 64(3):524-32. PubMed ID: 22659018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants.
    Turmel M; Otis C; Lemieux C
    Plant Cell; 2003 Aug; 15(8):1888-903. PubMed ID: 12897260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative Chloroplast Genomes of
    Chen J; Zang Y; Shang S; Liang S; Zhu M; Wang Y; Tang X
    Front Plant Sci; 2021; 12():741152. PubMed ID: 34630493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg?
    Doetsch NA; Thompson MD; Hallick RB
    Mol Biol Evol; 1998 Jan; 15(1):76-86. PubMed ID: 9491607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae.
    de Cambiaire JC; Otis C; Turmel M; Lemieux C
    BMC Genomics; 2007 Jul; 8():213. PubMed ID: 17610731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants.
    Kim KJ; Lee HL
    DNA Res; 2004 Aug; 11(4):247-61. PubMed ID: 15500250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative analysis of chloroplast genomes of five Robinia species: Genome comparative and evolution analysis.
    Yu X; Zuo L; Lu D; Lu B; Yang M; Wang J
    Gene; 2019 Mar; 689():141-151. PubMed ID: 30576807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organellar maturases: A window into the evolution of the spliceosome.
    Schmitz-Linneweber C; Lampe MK; Sultan LD; Ostersetzer-Biran O
    Biochim Biophys Acta; 2015 Sep; 1847(9):798-808. PubMed ID: 25626174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide analysis of carbohydrate-active enzymes in Pyramimonas parkeae (Prasinophyceae).
    Satjarak A; Graham LE
    J Phycol; 2017 Oct; 53(5):1072-1086. PubMed ID: 28708263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa. Three internal transcribed spacers and 12 group I intron insertion sites.
    Turmel M; Gutell RR; Mercier JP; Otis C; Lemieux C
    J Mol Biol; 1993 Jul; 232(2):446-67. PubMed ID: 8393936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative Bioinformatics Analysis of the Chloroplast Genomes of a Wild Diploid Gossypium and Two Cultivated Allotetraploid Species.
    Talat F; Wang K
    Iran J Biotechnol; 2015 Sep; 13(3):47-56. PubMed ID: 28959299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The complete chloroplast and mitochondrial genomes of the green macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta).
    Melton JT; Leliaert F; Tronholm A; Lopez-Bautista JM
    PLoS One; 2015; 10(4):e0121020. PubMed ID: 25849557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The chloroplast genome of the marine green macroalga Ulva fasciata Delile (Ulvophyceae, Chlorophyta).
    Melton JT; Lopez-Bautista JM
    Mitochondrial DNA A DNA Mapp Seq Anal; 2017 Jan; 28(1):93-95. PubMed ID: 26710262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae.
    Hong CP; Park J; Lee Y; Lee M; Park SG; Uhm Y; Lee J; Kim CK
    BMC Genomics; 2017 Aug; 18(1):607. PubMed ID: 28800729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures.
    Hausner G; Olson R; Simon D; Johnson I; Sanders ER; Karol KG; McCourt RM; Zimmerly S
    Mol Biol Evol; 2006 Feb; 23(2):380-91. PubMed ID: 16267141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.