These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 2885306)
1. Amino acid concentrations in Rhodospirillum rubrum during expression and switch-off of nitrogenase activity. Kanemoto RH; Ludden PW J Bacteriol; 1987 Jul; 169(7):3035-43. PubMed ID: 2885306 [TBL] [Abstract][Full Text] [Related]
2. Changes in amino acid and nucleotide pools of Rhodospirillum rubrum during switch-off of nitrogenase activity initiated by NH4+ or darkness. Li JD; Hu CZ; Yoch DC J Bacteriol; 1987 Jan; 169(1):231-7. PubMed ID: 2878918 [TBL] [Abstract][Full Text] [Related]
3. Adenine nucleotide levels in Rhodospirillum rubrum during switch-off of whole-cell nitrogenase activity. Paul TD; Ludden PW Biochem J; 1984 Dec; 224(3):961-9. PubMed ID: 6441571 [TBL] [Abstract][Full Text] [Related]
4. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. Zhang Y; Pohlmann EL; Ludden PW; Roberts GP J Bacteriol; 2000 Feb; 182(4):983-92. PubMed ID: 10648524 [TBL] [Abstract][Full Text] [Related]
5. Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. Zhang Y; Cummings AD; Burris RH; Ludden PW; Roberts GP J Bacteriol; 1995 Sep; 177(18):5322-6. PubMed ID: 7665521 [TBL] [Abstract][Full Text] [Related]
6. L-methionine-SR-sulfoximine as a probe for the role of glutamine synthetase in nitrogenase switch-off by ammonia and glutamine in Rhodopseudomonas palustris. Arp DJ; Zumft WG Arch Microbiol; 1983 Jan; 134(1):17-22. PubMed ID: 6135404 [TBL] [Abstract][Full Text] [Related]
7. Nitrogenase switch-off and regulation of ammonium assimilation in response to light deprivation in Rhodospirillum rubrum are influenced by the nitrogen source used during growth. Teixeira PF; Wang H; Nordlund S J Bacteriol; 2010 Mar; 192(5):1463-6. PubMed ID: 20023013 [TBL] [Abstract][Full Text] [Related]
8. Derepression of nitrogenase by addition of malate to cultures of Rhodospirillum rubrum grown with glutamate as the carbon and nitrogen source. Hoover TR; Ludden PW J Bacteriol; 1984 Jul; 159(1):400-3. PubMed ID: 6145702 [TBL] [Abstract][Full Text] [Related]
9. Photoproduction of ammonium ion from N2 in Rhodospirillum rubrum. Weare NM; Shanmugam KT Arch Microbiol; 1976 Nov; 110(23):207-13. PubMed ID: 13753 [TBL] [Abstract][Full Text] [Related]
10. Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp. Hartmann A; Fu H; Burris RH J Bacteriol; 1986 Mar; 165(3):864-70. PubMed ID: 3081492 [TBL] [Abstract][Full Text] [Related]
11. Effect of ammonia, darkness, and phenazine methosulfate on whole-cell nitrogenase activity and Fe protein modification in Rhodospirillum rubrum. Kanemoto RH; Ludden PW J Bacteriol; 1984 May; 158(2):713-20. PubMed ID: 6427184 [TBL] [Abstract][Full Text] [Related]
12. Manganese, an essential trace element for N2 fixation by Rhodospirillum rubrum and Rhodopseudomonas capsulata: role in nitrogenase regulation. Yoch DC J Bacteriol; 1979 Dec; 140(3):987-95. PubMed ID: 42641 [TBL] [Abstract][Full Text] [Related]
13. Posttranslational regulation of nitrogenase activity in Azospirillum brasilense ntrBC mutants: ammonium and anaerobic switch-off occurs through independent signal transduction pathways. Zhang Y; Burris RH; Ludden PW; Roberts GP J Bacteriol; 1994 Sep; 176(18):5780-7. PubMed ID: 7916012 [TBL] [Abstract][Full Text] [Related]
14. Uridylylation of the P(II) protein in the photosynthetic bacterium Rhodospirillum rubrum. Johansson M; Nordlund S J Bacteriol; 1997 Jul; 179(13):4190-4. PubMed ID: 9209032 [TBL] [Abstract][Full Text] [Related]
15. Regulation of nitrogenase synthesis in intact cells of Rhodospirillum rubrum: inactivation of nitrogen fixation by ammonia, L-glutamine and L-asparagine. Neilson AH; Nordlund S J Gen Microbiol; 1975 Nov; 91(1):53-62. PubMed ID: 811763 [TBL] [Abstract][Full Text] [Related]
16. Mutations in the draT and draG genes of Rhodospirillum rubrum result in loss of regulation of nitrogenase by reversible ADP-ribosylation. Liang JH; Nielsen GM; Lies DP; Burris RH; Roberts GP; Ludden PW J Bacteriol; 1991 Nov; 173(21):6903-9. PubMed ID: 1938894 [TBL] [Abstract][Full Text] [Related]
17. Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes. Ludden PW Mol Cell Biochem; 1994 Sep; 138(1-2):123-9. PubMed ID: 7898454 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. Zhang Y; Pohlmann EL; Ludden PW; Roberts GP J Bacteriol; 2001 Nov; 183(21):6159-68. PubMed ID: 11591658 [TBL] [Abstract][Full Text] [Related]
20. Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum. Zhang Y; Wolfe DM; Pohlmann EL; Conrad MC; Roberts GP Microbiology (Reading); 2006 Jul; 152(Pt 7):2075-2089. PubMed ID: 16804182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]