These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28853164)

  • 1. Two-stage designs versus European scaled average designs in bioequivalence studies for highly variable drugs: Which to choose?
    Molins E; Cobo E; Ocaña J
    Stat Med; 2017 Dec; 36(30):4777-4788. PubMed ID: 28853164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of group sequential and fixed sample size designs for bioequivalence trials with highly variable drugs.
    Knahl SIE; Lang B; Fleischer F; Kieser M
    Eur J Clin Pharmacol; 2018 May; 74(5):549-559. PubMed ID: 29362819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the upper sample size limit in two-stage bioequivalence designs.
    Karalis V
    Int J Pharm; 2013 Nov; 456(1):87-94. PubMed ID: 23954235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the type I error rate in two-stage sequential adaptive designs when testing for average bioequivalence.
    Maurer W; Jones B; Chen Y
    Stat Med; 2018 May; 37(10):1587-1607. PubMed ID: 29462835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of bioequivalence for highly variable drugs with scaled average bioequivalence.
    Tothfalusi L; Endrenyi L; Arieta AG
    Clin Pharmacokinet; 2009; 48(11):725-43. PubMed ID: 19817502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage designs for cross-over bioequivalence trials.
    Kieser M; Rauch G
    Stat Med; 2015 Jul; 34(16):2403-16. PubMed ID: 25809815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflation of Type I Error in the Evaluation of Scaled Average Bioequivalence, and a Method for its Control.
    Labes D; Schütz H
    Pharm Res; 2016 Nov; 33(11):2805-14. PubMed ID: 27480875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bioequivalence of highly variable drugs and drug products.
    Midha KK; Rawson MJ; Hubbard JW
    Int J Clin Pharmacol Ther; 2005 Oct; 43(10):485-98. PubMed ID: 16240706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating product bioequivalence for highly variable veterinary drugs.
    Claxton R; Cook J; Endrenyi L; Lucas A; Martinez MN; Sutton SC
    J Vet Pharmacol Ther; 2012 Apr; 35 Suppl 1():11-6. PubMed ID: 22413787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On statistical power for average bioequivalence testing under replicated crossover designs.
    Wan H; Chow SC
    J Biopharm Stat; 2002 Aug; 12(3):295-309. PubMed ID: 12448572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the bioequivalence of highly-variable drugs and drug products.
    Tothfalusi L; Endrenyi L; Midha KK; Rawson MJ; Hubbard JW
    Pharm Res; 2001 Jun; 18(6):728-33. PubMed ID: 11474774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing for bioequivalence of highly variable drugs from TR-RT crossover designs with heterogeneous residual variances.
    Kang Q; Vahl CI
    Pharm Stat; 2017 Sep; 16(5):361-377. PubMed ID: 28620937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-stage designs in bioequivalence trials.
    Schütz H
    Eur J Clin Pharmacol; 2015 Mar; 71(3):271-81. PubMed ID: 25604509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the reference scaled bioequivalence semi-replicate method with other approaches: focus on human exposure to drugs.
    Karalis V; Symillides M; Macheras P
    Eur J Pharm Sci; 2009 Aug; 38(1):55-63. PubMed ID: 19524039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An iterative method to protect the type I error rate in bioequivalence studies under two-stage adaptive 2×2 crossover designs.
    Molins E; Labes D; Schütz H; Cobo E; Ocaña J
    Biom J; 2021 Jan; 63(1):122-133. PubMed ID: 33000873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consumer's risk in the EMA and FDA regulatory approaches for bioequivalence in highly variable drugs.
    Muñoz J; Alcaide D; Ocaña J
    Stat Med; 2016 May; 35(12):1933-43. PubMed ID: 26707698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical methodology for highly variable compounds: A novel design approach for the ofatumumab Phase 2 bioequivalence study.
    Jones B; Li B; Bagger M; Goodyear A; Ludwig I
    Pharm Stat; 2022 Nov; 21(6):1357-1365. PubMed ID: 35604539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interchangeability between Generic and Reference Products: Limits of Average Bioequivalence Methodology.
    Lechat P
    Eur J Drug Metab Pharmacokinet; 2022 Nov; 47(6):777-787. PubMed ID: 35986193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Exact Procedure for the Evaluation of Reference-Scaled Average Bioequivalence.
    Tothfalusi L; Endrenyi L
    AAPS J; 2016 Mar; 18(2):476-89. PubMed ID: 26831249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified large sample approach in the assessment of population bioequivalence.
    Quiroz J; Ting N; Wei GC; Burdick RK
    J Biopharm Stat; 2000 Nov; 10(4):527-44. PubMed ID: 11104391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.