BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 2885370)

  • 1. Chemoarchitectonics of the brainstem in infrared sensitive and nonsensitive snakes.
    Kusunoki T; Kishida R; Kadota T; Goris RC
    J Hirnforsch; 1987; 28(1):27-43. PubMed ID: 2885370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoarchitectonics of the forebrain of the hagfish, Eptatretus burgeri.
    Kusunoki T; Kadota T; Kishida R
    J Hirnforsch; 1981; 22(3):285-98. PubMed ID: 7276541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The monoamine-containing neurons in avian brain: I. A study of the brain stem of the chicken (Gallus domesticus) by means of fluorescence and acetylcholinesterase histochemistry.
    Dubé L; Parent A
    J Comp Neurol; 1981 Mar; 196(4):695-708. PubMed ID: 6110679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tectal projections of an infrared sensitive snake, Crotalus viridis.
    Schroeder DM
    J Comp Neurol; 1981 Jan; 195(3):477-500. PubMed ID: 7204658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connections of the tectum of the rattlesnake Crotalus viridis: an HRP study.
    Gruberg ER; Kicliter E; Newman EA; Kass L; Hartline PH
    J Comp Neurol; 1979 Nov; 188(1):31-41. PubMed ID: 500853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The infrared trigemino-tectal pathway in the rattlesnake and in the python.
    Newman EA; Gruberg ER; Hartline PH
    J Comp Neurol; 1980 Jun; 191(3):465-77. PubMed ID: 7410602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoarchitectonics of the brain stem of the hagfish, Eptatretus burgeri, with special reference to the primordial cerebellum.
    Kusunoki T; Kadota T; Kishida R
    J Hirnforsch; 1982; 23(1):109-19. PubMed ID: 6124572
    [No Abstract]   [Full Text] [Related]  

  • 8. Distribution of acetylcholinesterase in the hippocampal region of the mouse: I. Entorhinal area, parasubiculum, retrosplenial area, and presubiculum.
    Slomianka L; Geneser FA
    J Comp Neurol; 1991 Jan; 303(3):339-54. PubMed ID: 1706733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of choline acetyltransferase-immunoreactive neurons in the brain of a cyprinid teleost (Phoxinus phoxinus L.).
    Ekström P
    J Comp Neurol; 1987 Feb; 256(4):494-515. PubMed ID: 3549797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ascending projection of the nucleus of the lateral descending trigeminal tract: a nucleus in the infrared system of the rattlesnake, Crotalus viridis.
    Stanford LR; Schroeder DM; Hartline PH
    J Comp Neurol; 1981 Sep; 201(2):161-73. PubMed ID: 7287924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optic tectum of the eastern garter snake, Thamnophis sirtalis. V. Morphology of brainstem afferents and general discussion.
    Dacey DM; Ulinski PS
    J Comp Neurol; 1986 Mar; 245(4):423-53. PubMed ID: 3700709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The activities of the transmitter metabolizing enzymes monoamineoxidase and acetylcholinesterase and of succinic dehydrogenase were investigated in the telencephalon of Salmo irideus (teleostei) (author's transl)].
    Danner H; Turowski A
    J Hirnforsch; 1977; 18(3):293-300. PubMed ID: 303654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine structure of the superficial layers of the viper optic tectum. A Golgi and electron-microscopic study.
    Repérant J; Peyrichoux J; Rio JP
    J Comp Neurol; 1981 Jul; 199(3):393-417. PubMed ID: 7263954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trigeminocerebellar, trigeminotectal, and trigeminothalamic projections: a double retrograde axonal tracing study in the mouse.
    Steindler DA
    J Comp Neurol; 1985 Jul; 237(2):155-75. PubMed ID: 4031120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histochemical studies on the distribution of some enzymes concerned with carbohydrate metabolism in the locus ceruleus, nucleus tractus mesencephalicus n. trigemini, nucleus dorsalis n. vagi and nucleus n. hypoglossi of the rat.
    Iijima K; Imai K
    Acta Histochem; 1975; 52(1):145-63. PubMed ID: 809976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculenta. A tracing study using cobaltic-lysine complex.
    Tóth P; Csank G; Lázár G
    J Hirnforsch; 1985; 26(4):365-83. PubMed ID: 3934259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mormyrid brainstem. I. Distribution of brainstem neurones projecting to the spinal cord in Gnathonemus petersii. An HRP study.
    Hlavacek M; Tahar M; Libouban S; Szabo T
    J Hirnforsch; 1984; 25(6):603-15. PubMed ID: 6526990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incertal projections from the brainstem and cerebellum: a horseradish peroxidase study in the cat.
    Aguirre JA; Coveñas R; Burgos C; Castro T
    J Hirnforsch; 1989; 30(4):449-55. PubMed ID: 2794484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brainstem projections of sensory and motor components of the vagus nerve in the rat.
    Kalia M; Sullivan JM
    J Comp Neurol; 1982 Nov; 211(3):248-65. PubMed ID: 7174893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projections from visual areas of the cerebral cortex to pretectal nuclear complex, terminal accessory optic nuclei, and superior colliculus in macaque monkey.
    Lui F; Gregory KM; Blanks RH; Giolli RA
    J Comp Neurol; 1995 Dec; 363(3):439-60. PubMed ID: 8847410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.