These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 28853855)

  • 1. Rapid and Efficient Self-Assembly of Au@ZnO Core-Shell Nanoparticle Arrays with an Enhanced and Tunable Plasmonic Absorption for Photoelectrochemical Hydrogen Generation.
    Sun Y; Xu B; Shen Q; Hang L; Men D; Zhang T; Li H; Li C; Li Y
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31897-31906. PubMed ID: 28853855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting.
    Wu M; Chen WJ; Shen YH; Huang FZ; Li CH; Li SK
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15052-60. PubMed ID: 25144940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ZnO/ZnFe
    Lan Y; Liu Z; Guo Z; Li X; Zhao L; Zhan L; Zhang M
    Dalton Trans; 2018 Sep; 47(35):12181-12187. PubMed ID: 30106080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting.
    Vahidzadeh E; Zeng S; Alam KM; Kumar P; Riddell S; Chaulagain N; Gusarov S; Kobryn AE; Shankar K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42741-42752. PubMed ID: 34476945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting.
    Liu Y; Yan X; Kang Z; Li Y; Shen Y; Sun Y; Wang L; Zhang Y
    Sci Rep; 2016 Jul; 6():29907. PubMed ID: 27443692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable thickness of mesoporous ZnO-coated metal nanoparticles for enhanced visible-light driven photoelectrochemical water splitting.
    Zhou N; Yan R; Wang X; Fu J; Zhang J; Li Y; Sun X
    Chemosphere; 2021 Jun; 273():129679. PubMed ID: 33515964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis.
    Sun Y; Sun Y; Zhang T; Chen G; Zhang F; Liu D; Cai W; Li Y; Yang X; Li C
    Nanoscale; 2016 May; 8(20):10774-82. PubMed ID: 27160795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting.
    Zhang X; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4480-9. PubMed ID: 24598779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An unconventional outer-to-inner synthesis strategy for core (Au)-shell nanostructures with photo-electrochemical enhancement.
    Zhang Z; Baek M; Song H; Yong K
    Nanoscale; 2017 Apr; 9(16):5342-5351. PubMed ID: 28401236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au@CdS Core-Shell Nanoparticles-Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splitting.
    Guo CX; Xie J; Yang H; Li CM
    Adv Sci (Weinh); 2015 Dec; 2(12):1500135. PubMed ID: 27980921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Morphology and Plasmonic on Au/ZnO Films for Efficient Photoelectrochemical Water Splitting.
    Zayed M; Nasser N; Shaban M; Alshaikh H; Hamdy H; Ahmed AM
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes.
    Wang F; Seo JH; Li Z; Kvit AV; Ma Z; Wang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1288-93. PubMed ID: 24383705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical TiO2-CuInS2 core-shell nanoarrays for photoelectrochemical water splitting.
    Guo K; Liu Z; Han J; Liu Z; Li Y; Wang B; Cui T; Zhou C
    Phys Chem Chem Phys; 2014 Aug; 16(30):16204-13. PubMed ID: 24969515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ etching-induced self-assembly of metal cluster decorated one-dimensional semiconductors for solar-powered water splitting: unraveling cooperative synergy by photoelectrochemical investigations.
    Xiao FX; Liu B
    Nanoscale; 2017 Nov; 9(43):17118-17132. PubMed ID: 29087419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of ZnO/ZnS/CdS/CuInS₂ core-shell nanowire arrays via ion exchange: p-n junction photoanode with enhanced photoelectrochemical activity under visible light.
    Yu YX; Ouyang WX; Liao ZT; Du BB; Zhang WD
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8467-74. PubMed ID: 24758144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Type-II ZnO/ZnS core-shell nanowires: Earth-abundant photoanode for solar-driven photoelectrochemical water splitting.
    Hassan MA; Johar MA; Waseem A; Bagal IV; Ha JS; Ryu SW
    Opt Express; 2019 Feb; 27(4):A184-A196. PubMed ID: 30876134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting.
    Miao J; Yang HB; Khoo SY; Liu B
    Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel ZnO/Fe₂O₃ Core-Shell Nanowires for Photoelectrochemical Water Splitting.
    Hsu YK; Chen YC; Lin YG
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14157-62. PubMed ID: 26053274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer-Mediated Self-Assembly of TiO2@Cu2O Core-Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation.
    Yuan W; Yuan J; Xie J; Li CM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6082-92. PubMed ID: 26908094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZnO-ZnGa2O4 core-shell nanowire array for stable photoelectrochemical water splitting.
    Zhong M; Li Y; Yamada I; Delaunay JJ
    Nanoscale; 2012 Mar; 4(5):1509-14. PubMed ID: 22200054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.