BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28853878)

  • 1. Complexation and Redox Buffering of Iron(II) by Dissolved Organic Matter.
    Daugherty EE; Gilbert B; Nico PS; Borch T
    Environ Sci Technol; 2017 Oct; 51(19):11096-11104. PubMed ID: 28853878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich fen.
    Kügler S; Cooper RE; Wegner CE; Mohr JF; Wichard T; Küsel K
    Sci Total Environ; 2019 Jan; 646():972-988. PubMed ID: 30235650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments.
    Zheng W; Liang L; Gu B
    Environ Sci Technol; 2012 Jan; 46(1):292-9. PubMed ID: 22107154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation, Aggregation, and Deposition Dynamics of NOM-Iron Colloids at Anoxic-Oxic Interfaces.
    Liao P; Li W; Jiang Y; Wu J; Yuan S; Fortner JD; Giammar DE
    Environ Sci Technol; 2017 Nov; 51(21):12235-12245. PubMed ID: 28992695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper redox transformation and complexation by reduced and oxidized soil humic acid. 1. X-ray absorption spectroscopy study.
    Fulda B; Voegelin A; Maurer F; Christl I; Kretzschmar R
    Environ Sci Technol; 2013 Oct; 47(19):10903-11. PubMed ID: 24050649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of natural organic matter in chemical and microbial reduction of ferric iron.
    Chen J; Gu B; Royer RA; Burgos WD
    Sci Total Environ; 2003 May; 307(1-3):167-78. PubMed ID: 12711432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and Transport of Cr(III)-NOM-Fe Colloids upon Reaction of Cr(VI) with NOM-Fe(II) Colloids at Anoxic-Oxic Interfaces.
    Liao P; Pan C; Ding W; Li W; Yuan S; Fortner JD; Giammar DE
    Environ Sci Technol; 2020 Apr; 54(7):4256-4266. PubMed ID: 32163701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of organically complexed ferric iron by superoxide in a simulated natural water.
    Rose AL; Waite TD
    Environ Sci Technol; 2005 Apr; 39(8):2645-50. PubMed ID: 15884361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic complexation of Fe(II) and its impact on the redox cycling of iron in rain.
    Kieber RJ; Skrabal SA; Smith BJ; Willey JD
    Environ Sci Technol; 2005 Mar; 39(6):1576-83. PubMed ID: 15819212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe(II) uptake on natural montmorillonites. I. Macroscopic and spectroscopic characterization.
    Soltermann D; Marques Fernandes M; Baeyens B; Dähn R; Joshi PA; Scheinost AC; Gorski CA
    Environ Sci Technol; 2014; 48(15):8688-97. PubMed ID: 24930689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee River fulvic acid under circumneutral freshwater conditions.
    Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Jan; 47(2):829-35. PubMed ID: 23231429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental protocol for structural characterization of Fe in dilute natural waters.
    Sundman A; Karlsson T; Persson P
    Environ Sci Technol; 2013 Aug; 47(15):8557-64. PubMed ID: 23815564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments.
    Li B; Liao P; Xie L; Li Q; Pan C; Ning Z; Liu C
    Water Res; 2020 Aug; 181():115923. PubMed ID: 32422451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.
    ThomasArrigo LK; Mikutta C; Byrne J; Kappler A; Kretzschmar R
    Environ Sci Technol; 2017 Jun; 51(12):6897-6907. PubMed ID: 28590131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. River-derived humic substances as iron chelators in seawater.
    Krachler R; Krachler RF; Wallner G; Hann S; Laux M; Cervantes Recalde MF; Jirsa F; Neubauer E; von der Kammer F; Hofmann T; Keppler BK
    Mar Chem; 2015 Aug; 174():85-93. PubMed ID: 26412934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation.
    Royer RA; Burgos WD; Fisher AS; Unz RF; Dempsey BA
    Environ Sci Technol; 2002 May; 36(9):1939-46. PubMed ID: 12026974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from X-ray absorption spectroscopy.
    Hoffmann M; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2012 Nov; 46(21):11788-97. PubMed ID: 23075303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended X-ray absorption fine structure spectroscopy evidence for the complexation of cadmium by reduced sulfur groups in natural organic matter.
    Karlsson T; Persson P; Skyllberg U
    Environ Sci Technol; 2005 May; 39(9):3048-55. PubMed ID: 15926551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selenate removal by zero-valent iron in oxic condition: the role of Fe(II) and selenate removal mechanism.
    Yoon IH; Bang S; Kim KW; Kim MG; Park SY; Choi WK
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1081-90. PubMed ID: 25943509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.