BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 28853891)

  • 1. Investigation of the Iron(II) Release Mechanism of Human H-Ferritin as a Function of pH.
    Sala D; Ciambellotti S; Giachetti A; Turano P; Rosato A
    J Chem Inf Model; 2017 Sep; 57(9):2112-2118. PubMed ID: 28853891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal binding sites of human H-chain ferritin and iron transport mechanism to the ferroxidase sites: a molecular dynamics simulation study.
    Laghaei R; Evans DG; Coalson RD
    Proteins; 2013 Jun; 81(6):1042-50. PubMed ID: 23344859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synergistic mechanisms of apo-ferritin structural transitions and Au(iii) ion transportation: molecular dynamics simulations with the Markov state model.
    Peng X; Lu C; Liu Z; Lu D
    Phys Chem Chem Phys; 2021 Aug; 23(32):17158-17165. PubMed ID: 34318824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of iron transport through human H-chain ferritin.
    Laghaei R; Kowallis W; Evans DG; Coalson RD
    J Phys Chem A; 2014 Sep; 118(35):7442-53. PubMed ID: 24527783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of radio frequency magnetic fields on iron release from cage proteins.
    Céspedes O; Ueno S
    Bioelectromagnetics; 2009 Jul; 30(5):336-42. PubMed ID: 19274682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PAMAM G4 dendrimers as inhibitors of the iron storage properties of human L-chain ferritin.
    Camarada MB; Márquez-Miranda V; Araya-Durán I; Yévenes A; González-Nilo F
    Phys Chem Chem Phys; 2015 Jul; 17(29):19001-11. PubMed ID: 26126644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry at the protein-mineral interface in L-ferritin assists the assembly of a functional (μ
    Pozzi C; Ciambellotti S; Bernacchioni C; Di Pisa F; Mangani S; Turano P
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2580-2585. PubMed ID: 28202724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin.
    Okuda M; Iwahori K; Yamashita I; Yoshimura H
    Biotechnol Bioeng; 2003 Oct; 84(2):187-94. PubMed ID: 12966575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron Biomineral Growth from the Initial Nucleation Seed in L-Ferritin.
    Ciambellotti S; Pozzi C; Mangani S; Turano P
    Chemistry; 2020 May; 26(26):5770-5773. PubMed ID: 32027764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and characterization of functional recombinant hybrid heteropolymers of camel hepcidin and human ferritin H and L chains.
    Boumaiza M; Carmona F; Poli M; Asperti M; Gianoncelli A; Bertuzzi M; Ruzzenenti P; Arosio P; Marzouki MN
    Protein Eng Des Sel; 2017 Feb; 30(2):77-84. PubMed ID: 27980120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutant ferritin L-chains that cause neurodegeneration act in a dominant-negative manner to reduce ferritin iron incorporation.
    Luscieti S; Santambrogio P; Langlois d'Estaintot B; Granier T; Cozzi A; Poli M; Gallois B; Finazzi D; Cattaneo A; Levi S; Arosio P
    J Biol Chem; 2010 Apr; 285(16):11948-57. PubMed ID: 20159981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of surface confined ferritin during iron loading.
    Federici S; Padovani F; Poli M; Rodriguez FC; Arosio P; Depero LE; Bergese P
    Colloids Surf B Biointerfaces; 2016 Sep; 145():520-525. PubMed ID: 27281237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule level dynamic observation of disassembly of the apo-ferritin cage in solution.
    Maity B; Li Z; Niwase K; Ganser C; Furuta T; Uchihashi T; Lu D; Ueno T
    Phys Chem Chem Phys; 2020 Sep; 22(33):18562-18572. PubMed ID: 32785391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics and computational study of ligand docking and electron transfer in ferritins.
    Subramanian V; Evans DG
    J Phys Chem B; 2012 Aug; 116(31):9287-302. PubMed ID: 22680309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel strategy of natural plant ferritin to protect DNA from oxidative damage during iron oxidation.
    Liao X; Lv C; Zhang X; Masuda T; Li M; Zhao G
    Free Radic Biol Med; 2012 Jul; 53(2):375-82. PubMed ID: 22580341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative Mössbauer study of the mineral cores of human H-chain ferritin employing dioxygen and hydrogen peroxide as iron oxidants.
    Bou-Abdallah F; Carney E; Chasteen ND; Arosio P; Viescas AJ; Papaefthymiou GC
    Biophys Chem; 2007 Nov; 130(3):114-21. PubMed ID: 17881115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferritin for the clinician.
    Knovich MA; Storey JA; Coffman LG; Torti SV; Torti FM
    Blood Rev; 2009 May; 23(3):95-104. PubMed ID: 18835072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pH-induced release of iron from transferrin investigated with a continuum electrostatic model.
    Lee DA; Goodfellow JM
    Biophys J; 1998 Jun; 74(6):2747-59. PubMed ID: 9635730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optimized low-cost protocol for standardized production of iron-free apoferritin nanocages with high protein recovery and suitable conformation for nanotechnological applications.
    Moglia I; Santiago M; Olivera-Nappa Á; Soler M
    J Inorg Biochem; 2018 Jun; 183():184-190. PubMed ID: 29279245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loading of iron into recombinant rat liver ferritin heteropolymers by ceruloplasmin.
    Juan SH; Guo JH; Aust SD
    Arch Biochem Biophys; 1997 May; 341(2):280-6. PubMed ID: 9169016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.