These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28854363)

  • 1. Folding of the Cerebral Cortex Requires Cdk5 in Upper-Layer Neurons in Gyrencephalic Mammals.
    Shinmyo Y; Terashita Y; Dinh Duong TA; Horiike T; Kawasumi M; Hosomichi K; Tajima A; Kawasaki H
    Cell Rep; 2017 Aug; 20(9):2131-2143. PubMed ID: 28854363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex.
    Ohshima T; Hirasawa M; Tabata H; Mutoh T; Adachi T; Suzuki H; Saruta K; Iwasato T; Itohara S; Hashimoto M; Nakajima K; Ogawa M; Kulkarni AB; Mikoshiba K
    Development; 2007 Jun; 134(12):2273-82. PubMed ID: 17507397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gyrification of the cerebral cortex requires FGF signaling in the mammalian brain.
    Matsumoto N; Shinmyo Y; Ichikawa Y; Kawasaki H
    Elife; 2017 Nov; 6():. PubMed ID: 29132503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Investigation of the Mechanisms Underlying Development and Diseases of the Cerebral Cortex Using Mice and Ferrets].
    Kawasaki H
    Yakugaku Zasshi; 2021; 141(3):349-357. PubMed ID: 33642503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals.
    Toda T; Shinmyo Y; Dinh Duong TA; Masuda K; Kawasaki H
    Sci Rep; 2016 Jul; 6():29578. PubMed ID: 27403992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly.
    de Juan Romero C; Bruder C; Tomasello U; Sanz-Anquela JM; Borrell V
    EMBO J; 2015 Jul; 34(14):1859-74. PubMed ID: 25916825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal Migration Dynamics in the Developing Ferret Cortex.
    Gertz CC; Kriegstein AR
    J Neurosci; 2015 Oct; 35(42):14307-15. PubMed ID: 26490868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Investigations of the Development and Diseases of Cerebral Cortex Folding using Gyrencephalic Mammal Ferrets.
    Kawasaki H
    Biol Pharm Bull; 2018; 41(9):1324-1329. PubMed ID: 30175769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the factors involved in the locomotion mode of neuronal migration in the developing cerebral cortex.
    Nishimura YV; Sekine K; Chihama K; Nakajima K; Hoshino M; Nabeshima Y; Kawauchi T
    J Biol Chem; 2010 Feb; 285(8):5878-87. PubMed ID: 20022952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo gene delivery to the postnatal ferret cerebral cortex by DNA electroporation.
    Borrell V
    J Neurosci Methods; 2010 Feb; 186(2):186-95. PubMed ID: 19944720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the mechanisms underlying the development and evolution of folds of the cerebrum using gyrencephalic ferrets.
    Kawasaki H
    J Comp Neurol; 2024 Apr; 532(4):e25615. PubMed ID: 38587214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex.
    Ye T; Ip JP; Fu AK; Ip NY
    Nat Commun; 2014 Sep; 5():4826. PubMed ID: 25189171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathophysiological analyses of periventricular nodular heterotopia using gyrencephalic mammals.
    Matsumoto N; Hoshiba Y; Morita K; Uda N; Hirota M; Minamikawa M; Ebisu H; Shinmyo Y; Kawasaki H
    Hum Mol Genet; 2017 Mar; 26(6):1173-1181. PubMed ID: 28158406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement of CRMP2 Phosphorylation in Neuronal Migration of Developing Mouse Cerebral Cortex and Hippocampus and Redundant Roles of CRMP1 and CRMP4.
    Yamazaki Y; Moizumi M; Nagai J; Hatashita Y; Cai T; Kolattukudy P; Inoue T; Goshima Y; Ohshima T
    Cereb Cortex; 2022 Jan; 32(3):520-527. PubMed ID: 34297816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation.
    Kawasaki H; Iwai L; Tanno K
    Mol Brain; 2012 Jun; 5():24. PubMed ID: 22716093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cdk12 and Cdk13 regulate axonal elongation through a common signaling pathway that modulates Cdk5 expression.
    Chen HR; Lin GT; Huang CK; Fann MJ
    Exp Neurol; 2014 Nov; 261():10-21. PubMed ID: 24999027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensive branching of radially-migrating neurons in the mammalian cerebral cortex.
    Martínez-Martínez MÁ; Ciceri G; Espinós A; Fernández V; Marín O; Borrell V
    J Comp Neurol; 2019 Jul; 527(10):1558-1576. PubMed ID: 30520050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic contributions of cyclin-dependant kinase 5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain.
    Ohshima T; Ogawa M; Veeranna ; Hirasawa M; Longenecker G; Ishiguro K; Pant HC; Brady RO; Kulkarni AB; Mikoshiba K
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2764-9. PubMed ID: 11226314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cdk5 regulates N-cadherin-dependent neuronal migration during cortical development.
    Lee DK; Lee H; Yoon J; Hong S; Lee Y; Kim KT; Kim JW; Song MR
    Biochem Biophys Res Commun; 2019 Jun; 514(3):645-652. PubMed ID: 31076103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-acetylcysteine prevents beta-amyloid toxicity by a stimulatory effect on p35/cyclin-dependent kinase 5 activity in cultured cortical neurons.
    Hsiao YH; Chen PS; Yeh SH; Lin CH; Gean PW
    J Neurosci Res; 2008 Sep; 86(12):2685-95. PubMed ID: 18512759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.