These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28854394)

  • 1. A method for simulating the release of natural gas from the rupture of high-pressure pipelines in any terrain.
    Deng Y; Hu H; Yu B; Sun D; Hou L; Liang Y
    J Hazard Mater; 2018 Jan; 342():418-428. PubMed ID: 28854394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach for estimating toxic releases of H2S-containing natural gas.
    Jianwen Z; Da L; Wenxing F
    J Hazard Mater; 2014 Jan; 264():350-62. PubMed ID: 24316807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion of carbon dioxide released from buried high-pressure pipeline over complex terrain.
    Wang H; Liu B; Liu X; Lu C; Deng J; You Z
    Environ Sci Pollut Res Int; 2021 Feb; 28(6):6635-6648. PubMed ID: 33001391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion simulation and risk assessment model establishment of chlorine gas leakage based on terrain conditions.
    Ren XT; Ma XL; Liu JZ; Liu R; Zhao CQ; Wu H; Wang Z; Hai CX; Zhang XD
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):54742-54752. PubMed ID: 36881233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature extraction and pattern recognition of gas pipeline flow noise signals in a strong noisy background.
    Liu E; Lu C; Wen Z; Hao T; Lu X; Wang L
    PeerJ Comput Sci; 2024; 10():e2087. PubMed ID: 38983200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method of quantitative risk assessment for transmission pipeline carrying natural gas.
    Jo YD; Ahn BJ
    J Hazard Mater; 2005 Aug; 123(1-3):1-12. PubMed ID: 15913887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative risk assessment of CO2 transport by pipelines--a review of uncertainties and their impacts.
    Koornneef J; Spruijt M; Molag M; Ramírez A; Turkenburg W; Faaij A
    J Hazard Mater; 2010 May; 177(1-3):12-27. PubMed ID: 20022693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Leakage and Diffusion Characteristics and Hazard Range Determination of Buried Hydrogen-Blended Natural Gas Pipeline Based on CFD.
    Bu F; He Y; Lu Q; Liu M; Bai J; Lv Z; Leng C
    ACS Omega; 2024 Sep; 9(37):39202-39218. PubMed ID: 39310181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling-tracer study for risk assessment of a proposed sour gas facility.
    Sakiyama SK; Angle RP
    Environ Monit Assess; 1988 Mar; 10(2):133-46. PubMed ID: 24248626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The real-time estimation of hazardous gas dispersion by the integration of gas detectors, neural network and gas dispersion models.
    Wang B; Chen B; Zhao J
    J Hazard Mater; 2015 Dec; 300():433-442. PubMed ID: 26223017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of underwater gas release and dispersion behavior to assess subsea safety risk.
    Li X; Chen G; Khan F
    J Hazard Mater; 2019 Apr; 367():676-685. PubMed ID: 30654285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for simulating the entire leaking process and calculating the liquid leakage volume of a damaged pressurized pipeline.
    He G; Liang Y; Li Y; Wu M; Sun L; Xie C; Li F
    J Hazard Mater; 2017 Jun; 332():19-32. PubMed ID: 28279870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple model for the release rate of hazardous gas from a hole on high-pressure pipelines.
    Jo YD; Ahn BJ
    J Hazard Mater; 2003 Feb; 97(1-3):31-46. PubMed ID: 12573827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on leakage and explosion law of buried gas pipeline based on scenario construction.
    Kang Y; Ma S; Zhao M; Wu Z; Xia X
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):73899-73912. PubMed ID: 37199841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frost Heaving Damage Mechanism of a Buried Natural Gas Pipeline in a River and Creek Region.
    Su W; Huang S
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison study on qualitative and quantitative risk assessment methods for urban natural gas pipeline network.
    Han ZY; Weng WG
    J Hazard Mater; 2011 May; 189(1-2):509-18. PubMed ID: 21402442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Push Force Analysis of Anchor Block of the Oil and Gas Pipeline in a Single-Slope Tunnel Based on the Energy Balance Method.
    Yan Y; Zhang L; Yan X
    PLoS One; 2016; 11(3):e0150964. PubMed ID: 26963097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of low wind modeling approaches for two tall-stack databases.
    Paine R; Samani O; Kaplan M; Knipping E; Kumar N
    J Air Waste Manag Assoc; 2015 Nov; 65(11):1341-53. PubMed ID: 26302223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of turbulence models in heavy gas dispersion over obstacles.
    Sklavounos S; Rigas F
    J Hazard Mater; 2004 Apr; 108(1-2):9-20. PubMed ID: 15081160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-Term In-Situ Monitoring and Analysis of Terrain in Gas Hydrate Trial Harvesting Area.
    Cao C; Wang H; Ge Y; Wang W; Guo J; Zhou P; Gao F; Chen J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.