BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 28854601)

  • 1. Large-Scale Identification of Wolbachia pipientis Effectors.
    Rice DW; Sheehan KB; Newton ILG
    Genome Biol Evol; 2017 Jul; 9(7):1925-1937. PubMed ID: 28854601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton.
    Sheehan KB; Martin M; Lesser CF; Isberg RR; Newton IL
    mBio; 2016 Jul; 7(4):. PubMed ID: 27381293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle.
    Gutzwiller F; Carmo CR; Miller DE; Rice DW; Newton IL; Hawley RS; Teixeira L; Bergman CM
    G3 (Bethesda); 2015 Oct; 5(12):2843-56. PubMed ID: 26497146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversifying selection and host adaptation in two endosymbiont genomes.
    Brownlie JC; Adamski M; Slatko B; McGraw EA
    BMC Evol Biol; 2007 Apr; 7():68. PubMed ID: 17470297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Density of
    Deehan M; Lin W; Blum B; Emili A; Frydman H
    mBio; 2021 Jan; 12(1):. PubMed ID: 33436431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of putative effectors of the Type IV secretion system from the Wolbachia endosymbiont of Brugia malayi.
    Carpinone EM; Li Z; Mills MK; Foltz C; Brannon ER; Carlow CKS; Starai VJ
    PLoS One; 2018; 13(9):e0204736. PubMed ID: 30261054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Baker's Yeast to Determine Functions of Novel Wolbachia (and Other Prokaryotic) Effectors.
    Murphy RO; Beckmann JF
    Methods Mol Biol; 2024; 2739():321-336. PubMed ID: 38006560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wolbachia Endosymbionts Modify Drosophila Ovary Protein Levels in a Context-Dependent Manner.
    Christensen S; PĂ©rez Dulzaides R; Hedrick VE; Momtaz AJ; Nakayasu ES; Paul LN; Serbus LR
    Appl Environ Microbiol; 2016 Sep; 82(17):5354-63. PubMed ID: 27342560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What can symbiont titres tell us about co-evolution of Wolbachia and their host?
    Correa CC; Ballard JW
    J Invertebr Pathol; 2014 May; 118():20-7. PubMed ID: 24594301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila.
    McGraw EA; O'Neill SL
    Curr Opin Microbiol; 2004 Feb; 7(1):67-70. PubMed ID: 15036143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wolbachia and Sirtuin-4 interaction is associated with alterations in host glucose metabolism and bacterial titer.
    Carneiro Dutra HL; Deehan MA; Frydman H
    PLoS Pathog; 2020 Oct; 16(10):e1008996. PubMed ID: 33048997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis.
    Woolfit M; Algama M; Keith JM; McGraw EA; Popovici J
    PLoS One; 2015; 10(3):e0118595. PubMed ID: 25739023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wolbachia elevates host methyltransferase expression to block an RNA virus early during infection.
    Bhattacharya T; Newton ILG; Hardy RW
    PLoS Pathog; 2017 Jun; 13(6):e1006427. PubMed ID: 28617844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements.
    Wu M; Sun LV; Vamathevan J; Riegler M; Deboy R; Brownlie JC; McGraw EA; Martin W; Esser C; Ahmadinejad N; Wiegand C; Madupu R; Beanan MJ; Brinkac LM; Daugherty SC; Durkin AS; Kolonay JF; Nelson WC; Mohamoud Y; Lee P; Berry K; Young MB; Utterback T; Weidman J; Nierman WC; Paulsen IT; Nelson KE; Tettelin H; O'Neill SL; Eisen JA
    PLoS Biol; 2004 Mar; 2(3):E69. PubMed ID: 15024419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Within host selection for faster replicating bacterial symbionts.
    Chrostek E; Teixeira L
    PLoS One; 2018; 13(1):e0191530. PubMed ID: 29346449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wolbachia and host germline components compete for kinesin-mediated transport to the posterior pole of the Drosophila oocyte.
    Russell SL; Lemseffer N; White PM; Sullivan WT
    PLoS Pathog; 2018 Aug; 14(8):e1007216. PubMed ID: 30110391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monophyly of Wolbachia pipientis genomes within Drosophila melanogaster: geographic structuring, titre variation and host effects across five populations.
    Early AM; Clark AG
    Mol Ecol; 2013 Dec; 22(23):5765-78. PubMed ID: 24118111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wolbachia density and virulence attenuation after transfer into a novel host.
    McGraw EA; Merritt DJ; Droller JN; O'Neill SL
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2918-23. PubMed ID: 11880639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wolbachia infection alters olfactory-cued locomotion in Drosophila spp.
    Peng Y; Nielsen JE; Cunningham JP; McGraw EA
    Appl Environ Microbiol; 2008 Jul; 74(13):3943-8. PubMed ID: 18456851
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Lindsey ARI; Bhattacharya T; Hardy RW; Newton ILG
    mBio; 2021 Feb; 12(1):. PubMed ID: 33563832
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.