These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28854637)

  • 21. Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae).
    Szklarzewicz T; Grzywacz B; Szwedo J; Michalik A
    Protoplasma; 2016 Mar; 253(2):379-91. PubMed ID: 25900723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insect Bacterial Symbiont-Mediated Vitellogenin Uptake into Oocytes To Support Egg Development.
    Mao Q; Wu W; Huang L; Yi G; Jia D; Chen Q; Chen H; Wei T
    mBio; 2020 Nov; 11(6):. PubMed ID: 33172995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-Wide Transcriptional Dynamics in the Companion Bacterial Symbionts of the Glassy-Winged Sharpshooter (Cicadellidae:
    Bennett GM; Chong RA
    G3 (Bethesda); 2017 Sep; 7(9):3073-3082. PubMed ID: 28705905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lineage-Specific Patterns of Genome Deterioration in Obligate Symbionts of Sharpshooter Leafhoppers.
    Bennett GM; McCutcheon JP; McDonald BR; Moran NA
    Genome Biol Evol; 2015 Aug; 8(1):296-301. PubMed ID: 26260652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria.
    Mao M; Bennett GM
    ISME J; 2020 Jun; 14(6):1384-1395. PubMed ID: 32076126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-evolution and symbiont replacement shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial symbionts.
    Toenshoff ER; Gruber D; Horn M
    Environ Microbiol; 2012 May; 14(5):1284-95. PubMed ID: 22364314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facultatively intrabacterial localization of a planthopper endosymbiont as an adaptation to its vertical transmission.
    Michalik A; C Franco D; Szklarzewicz T; Stroiński A; Łukasik P
    mSystems; 2024 Jul; 9(7):e0063424. PubMed ID: 38934538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complete Genome Sequences of the Obligate Symbionts "Candidatus Sulcia muelleri" and "Ca. Nasuia deltocephalinicola" from the Pestiferous Leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae).
    Bennett GM; Abbà S; Kube M; Marzachì C
    Genome Announc; 2016 Jan; 4(1):. PubMed ID: 26798106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic Comparisons Reveal Selection Pressure and Functional Variation Between Nutritional Endosymbionts of Cave-Adapted and Epigean Hawaiian Planthoppers.
    Gossett JM; Porter ML; Vasquez YM; Bennett GM; Chong RA
    Genome Biol Evol; 2023 Mar; 15(3):. PubMed ID: 36864565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution.
    McCutcheon JP; Moran NA
    Genome Biol Evol; 2010; 2():708-18. PubMed ID: 20829280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes.
    Moran NA; Tran P; Gerardo NM
    Appl Environ Microbiol; 2005 Dec; 71(12):8802-10. PubMed ID: 16332876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transovarial Transmission of Bacteriome-Associated Symbionts in the Cicada
    Huang Z; Wang D; Li J; Wei C; He H
    Appl Environ Microbiol; 2020 Jun; 86(12):. PubMed ID: 32276978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Match and mismatch between dietary switches and microbial partners in plant sap-feeding insects.
    Bell-Roberts L; Douglas AE; Werner GDA
    Proc Biol Sci; 2019 May; 286(1902):20190065. PubMed ID: 31088273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization and morphological variation of three bacteriome-inhabiting symbionts within a planthopper of the genus Oliarus (Hemiptera: Cixiidae).
    Bressan A; Mulligan KL
    Environ Microbiol Rep; 2013 Aug; 5(4):499-505. PubMed ID: 23864562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phylogenomics of flavobacterial insect nutritional endosymbionts with implications for Auchenorrhyncha phylogeny.
    Cao Y; Dietrich CH
    Cladistics; 2022 Feb; 38(1):38-58. PubMed ID: 35049085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses.
    Wilson AC; Duncan RP
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10255-61. PubMed ID: 26039986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternative Transmission Patterns in Independently Acquired Nutritional Cosymbionts of Dictyopharidae Planthoppers.
    Michalik A; Castillo Franco D; Kobiałka M; Szklarzewicz T; Stroiński A; Łukasik P
    mBio; 2021 Aug; 12(4):e0122821. PubMed ID: 34465022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational Pressure Drives Differential Genome Conservation in Two Bacterial Endosymbionts of Sap-Feeding Insects.
    Waneka G; Vasquez YM; Bennett GM; Sloan DB
    Genome Biol Evol; 2021 Mar; 13(3):. PubMed ID: 33275136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts.
    Szabó G; Schulz F; Toenshoff ER; Volland JM; Finkel OM; Belkin S; Horn M
    ISME J; 2017 Mar; 11(3):715-726. PubMed ID: 27983719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids.
    Sloan DB; Moran NA
    Mol Biol Evol; 2012 Dec; 29(12):3781-92. PubMed ID: 22821013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.