These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 28854637)
41. Diversity of bacterial endosymbionts associated with Macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. Ishii Y; Matsuura Y; Kakizawa S; Nikoh N; Fukatsu T Appl Environ Microbiol; 2013 Aug; 79(16):5013-22. PubMed ID: 23770905 [TBL] [Abstract][Full Text] [Related]
42. Limited variation in microbial communities across populations of Macrosteles leafhoppers (Hemiptera: Cicadellidae). Mulio SÅ; Zwolińska A; Klejdysz T; Prus-Frankowska M; Michalik A; Kolasa M; Łukasik P Environ Microbiol Rep; 2024 Jun; 16(3):e13279. PubMed ID: 38855918 [TBL] [Abstract][Full Text] [Related]
43. Recurrent symbiont recruitment from fungal parasites in cicadas. Matsuura Y; Moriyama M; Łukasik P; Vanderpool D; Tanahashi M; Meng XY; McCutcheon JP; Fukatsu T Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E5970-E5979. PubMed ID: 29891654 [TBL] [Abstract][Full Text] [Related]
44. Dual "Bacterial-Fungal" Symbiosis in Deltocephalinae Leafhoppers (Insecta, Hemiptera, Cicadomorpha: Cicadellidae). Kobiałka M; Michalik A; Walczak M; Szklarzewicz T Microb Ecol; 2018 Apr; 75(3):771-782. PubMed ID: 28939987 [TBL] [Abstract][Full Text] [Related]
45. Symbiont Acquisition and Replacement as a Source of Ecological Innovation. Sudakaran S; Kost C; Kaltenpoth M Trends Microbiol; 2017 May; 25(5):375-390. PubMed ID: 28336178 [TBL] [Abstract][Full Text] [Related]
46. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. Wu D; Daugherty SC; Van Aken SE; Pai GH; Watkins KL; Khouri H; Tallon LJ; Zaborsky JM; Dunbar HE; Tran PL; Moran NA; Eisen JA PLoS Biol; 2006 Jun; 4(6):e188. PubMed ID: 16729848 [TBL] [Abstract][Full Text] [Related]
47. Bacterial endosymbiont localization in Hyalesthes obsoletus, the insect vector of Bois noir in Vitis vinifera. Gonella E; Negri I; Marzorati M; Mandrioli M; Sacchi L; Pajoro M; Crotti E; Rizzi A; Clementi E; Tedeschi R; Bandi C; Alma A; Daffonchio D Appl Environ Microbiol; 2011 Feb; 77(4):1423-35. PubMed ID: 21183640 [TBL] [Abstract][Full Text] [Related]
48. Two host clades, two bacterial arsenals: evolution through gene losses in facultative endosymbionts. Rollat-Farnier PA; Santos-Garcia D; Rao Q; Sagot MF; Silva FJ; Henri H; Zchori-Fein E; Latorre A; Moya A; Barbe V; Liu SS; Wang XW; Vavre F; Mouton L Genome Biol Evol; 2015 Feb; 7(3):839-55. PubMed ID: 25714744 [TBL] [Abstract][Full Text] [Related]
49. Novel Rickettsiella bacterium in the leafhopper Orosius albicinctus (Hemiptera: Cicadellidae). Iasur-Kruh L; Weintraub PG; Mozes-Daube N; Robinson WE; Perlman SJ; Zchori-Fein E Appl Environ Microbiol; 2013 Jul; 79(14):4246-52. PubMed ID: 23645190 [TBL] [Abstract][Full Text] [Related]
50. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Husnik F; Nikoh N; Koga R; Ross L; Duncan RP; Fujie M; Tanaka M; Satoh N; Bachtrog D; Wilson AC; von Dohlen CD; Fukatsu T; McCutcheon JP Cell; 2013 Jun; 153(7):1567-78. PubMed ID: 23791183 [TBL] [Abstract][Full Text] [Related]
51. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. McCutcheon JP; von Dohlen CD Curr Biol; 2011 Aug; 21(16):1366-72. PubMed ID: 21835622 [TBL] [Abstract][Full Text] [Related]
52. Cellular and potential molecular mechanisms underlying transovarial transmission of the obligate symbiont Sulcia in cicadas. Wang D; He H; Wei C Environ Microbiol; 2023 Apr; 25(4):836-852. PubMed ID: 36515176 [TBL] [Abstract][Full Text] [Related]
53. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. McCutcheon JP; McDonald BR; Moran NA Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15394-9. PubMed ID: 19706397 [TBL] [Abstract][Full Text] [Related]
54. Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Baumann P Annu Rev Microbiol; 2005; 59():155-89. PubMed ID: 16153167 [TBL] [Abstract][Full Text] [Related]
55. Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Bressan A; Arneodo J; Simonato M; Haines WP; Boudon-Padieu E Environ Microbiol; 2009 Dec; 11(12):3265-79. PubMed ID: 19758348 [TBL] [Abstract][Full Text] [Related]
56. Highly Reduced Complementary Genomes of Dual Bacterial Symbionts in the Mulberry Psyllid Anomoneura mori. Yasuda Y; Inoue H; Hirose Y; Nakabachi A Microbes Environ; 2024; 39(3):. PubMed ID: 39245568 [TBL] [Abstract][Full Text] [Related]
57. Changes in Endosymbiont Complexity Drive Host-Level Compensatory Adaptations in Cicadas. Campbell MA; Łukasik P; Meyer MC; Buckner M; Simon C; Veloso C; Michalik A; McCutcheon JP mBio; 2018 Nov; 9(6):. PubMed ID: 30425149 [TBL] [Abstract][Full Text] [Related]
58. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. Rao Q; Rollat-Farnier PA; Zhu DT; Santos-Garcia D; Silva FJ; Moya A; Latorre A; Klein CC; Vavre F; Sagot MF; Liu SS; Mouton L; Wang XW BMC Genomics; 2015 Mar; 16(1):226. PubMed ID: 25887812 [TBL] [Abstract][Full Text] [Related]
59. Hawaiian Nysius Insects Rely on an Obligate Symbiont with a Reduced Genome That Retains a Discrete Nutritional Profile to Match Their Plant Seed Diet. Stever H; Eiben J; Bennett GM Genome Biol Evol; 2021 Sep; 13(9):. PubMed ID: 34383896 [TBL] [Abstract][Full Text] [Related]
60. Defensive bacteriome symbiont with a drastically reduced genome. Nakabachi A; Ueoka R; Oshima K; Teta R; Mangoni A; Gurgui M; Oldham NJ; van Echten-Deckert G; Okamura K; Yamamoto K; Inoue H; Ohkuma M; Hongoh Y; Miyagishima SY; Hattori M; Piel J; Fukatsu T Curr Biol; 2013 Aug; 23(15):1478-84. PubMed ID: 23850282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]