These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28854640)

  • 1. Adaptive Prediction Emerges Over Short Evolutionary Time Scales.
    López García de Lomana A; Kaur A; Turkarslan S; Beer KD; Mast FD; Smith JJ; Aitchison JD; Baliga NS
    Genome Biol Evol; 2017 Jun; 9(6):1616-1623. PubMed ID: 28854640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution of nontransitive fitness in yeast.
    Buskirk SW; Rokes AB; Lang GI
    Elife; 2020 Dec; 9():. PubMed ID: 33372653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy as a Mechanism for Adaptive Prediction-Mediated Emergence of Drug Resistance.
    Nivedita N; Aitchison JD; Baliga NS
    Front Microbiol; 2021; 12():712631. PubMed ID: 34566920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in yeast are deleterious on average regardless of the degree of adaptation to the testing environment.
    Bao K; Strayer BR; Braker NP; Chan AA; Sharp NP
    Proc Biol Sci; 2024 Jun; 291(2025):20240064. PubMed ID: 38889780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary rescue and adaptation to abrupt environmental change depends upon the history of stress.
    Gonzalez A; Bell G
    Philos Trans R Soc Lond B Biol Sci; 2013 Jan; 368(1610):20120079. PubMed ID: 23209161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment.
    Kvitek DJ; Sherlock G
    PLoS Genet; 2013 Nov; 9(11):e1003972. PubMed ID: 24278038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation.
    Dhar R; Sägesser R; Weikert C; Wagner A
    Mol Biol Evol; 2013 Mar; 30(3):573-88. PubMed ID: 23125229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary engineering and molecular characterization of a caffeine-resistant Saccharomyces cerevisiae strain.
    Sürmeli Y; Holyavkin C; Topaloğlu A; Arslan M; Kısakesen Hİ; Çakar ZP
    World J Microbiol Biotechnol; 2019 Nov; 35(12):183. PubMed ID: 31728740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental memory alters the fitness effects of adaptive mutations in fluctuating environments.
    Abreu CI; Mathur S; Petrov DA
    Nat Ecol Evol; 2024 Sep; 8(9):1760-1775. PubMed ID: 39020024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.
    Tosato V; Sims J; West N; Colombin M; Bruschi CV
    Curr Genet; 2017 May; 63(2):281-292. PubMed ID: 27491680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of hybrid transgression on environmental tolerance in experimental yeast crosses.
    Stelkens RB; Brockhurst MA; Hurst GD; Miller EL; Greig D
    J Evol Biol; 2014 Nov; 27(11):2507-19. PubMed ID: 25262771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterozygote Advantage Is a Common Outcome of Adaptation in Saccharomyces cerevisiae.
    Sellis D; Kvitek DJ; Dunn B; Sherlock G; Petrov DA
    Genetics; 2016 Jul; 203(3):1401-13. PubMed ID: 27194750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.
    Gresham D; Desai MM; Tucker CM; Jenq HT; Pai DA; Ward A; DeSevo CG; Botstein D; Dunham MJ
    PLoS Genet; 2008 Dec; 4(12):e1000303. PubMed ID: 19079573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyploidy can drive rapid adaptation in yeast.
    Selmecki AM; Maruvka YE; Richmond PA; Guillet M; Shoresh N; Sorenson AL; De S; Kishony R; Michor F; Dowell R; Pellman D
    Nature; 2015 Mar; 519(7543):349-52. PubMed ID: 25731168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of Adaptation in Experimental Yeast Populations Exposed to Gradual and Abrupt Change in Heavy Metal Concentration.
    Gorter FA; Aarts MM; Zwaan BJ; de Visser JA
    Am Nat; 2016 Jan; 187(1):110-9. PubMed ID: 27277407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independent Mechanisms for Acquired Salt Tolerance versus Growth Resumption Induced by Mild Ethanol Pretreatment in
    McDaniel EA; Stuecker TN; Veluvolu M; Gasch AP; Lewis JA
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30487155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive prediction of environmental changes by microorganisms.
    Mitchell A; Romano GH; Groisman B; Yona A; Dekel E; Kupiec M; Dahan O; Pilpel Y
    Nature; 2009 Jul; 460(7252):220-4. PubMed ID: 19536156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments.
    Hong J; Gresham D
    PLoS Genet; 2014 Jan; 10(1):e1004041. PubMed ID: 24415948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive versus responsive gene expression strategies for growth in changing environments.
    Geisel N
    PLoS One; 2011; 6(11):e27033. PubMed ID: 22140435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of pleiotropic costs in experimental populations.
    Jasmin JN; Zeyl C
    J Evol Biol; 2013 Jun; 26(6):1363-9. PubMed ID: 23638686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.