BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28855322)

  • 1. The thermal background determines how the infrared and visual systems interact in pit vipers.
    Chen Q; Liu Y; Brauth SE; Fang G; Tang Y
    J Exp Biol; 2017 Sep; 220(Pt 17):3103-3109. PubMed ID: 28855322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses.
    Chen Q; Deng H; Brauth SE; Ding L; Tang Y
    PLoS One; 2012; 7(5):e34989. PubMed ID: 22606229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared imaging in vipers: differential responses of crotaline and viperine snakes to paired thermal targets.
    Safer AB; Grace MS
    Behav Brain Res; 2004 Sep; 154(1):55-61. PubMed ID: 15302110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pit viper thermography: the pit organ used by crotaline snakes to detect thermal contrast has poor spatial resolution.
    Clark RW; Bakken GS; Reed EJ; Soni A
    J Exp Biol; 2022 Dec; 225(24):. PubMed ID: 36453156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered visual experience and acute visual deprivation affect predatory targeting by infrared-imaging Boid snakes.
    Grace MS; Woodward OM
    Brain Res; 2001 Nov; 919(2):250-8. PubMed ID: 11701137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared snake eyes: TRPA1 and the thermal sensitivity of the snake pit organ.
    Panzano VC; Kang K; Garrity PA
    Sci Signal; 2010 Jun; 3(127):pe22. PubMed ID: 20571127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The imaging properties and sensitivity of the facial pits of pitvipers as determined by optical and heat-transfer analysis.
    Bakken GS; Krochmal AR
    J Exp Biol; 2007 Aug; 210(Pt 16):2801-10. PubMed ID: 17690227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal modeling of snake infrared reception: evidence for limited detection range.
    Jones BS; Lynn WF; Stone MO
    J Theor Biol; 2001 Mar; 209(2):201-11. PubMed ID: 11401462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooler snakes respond more strongly to infrared stimuli, but we have no idea why.
    Bakken GS; Schraft HA; Cattell RW; Tiu DB; Clark RW
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 29997162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-exome sequencing and genome-wide evolutionary analyses identify novel candidate genes associated with infrared perception in pit vipers.
    Tu N; Liang D; Zhang P
    Sci Rep; 2020 Aug; 10(1):13033. PubMed ID: 32747674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prey targeting by the infrared-imaging snake Python molurus: effects of experimental and congenital visual deprivation.
    Grace MS; Woodward OM; Church DR; Calisch G
    Behav Brain Res; 2001 Feb; 119(1):23-31. PubMed ID: 11164522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood flow in snake infrared organs: response-induced changes in individual vessels.
    Goris RC; Atobe Y; Nakano M; Funakoshi K; Terada K
    Microcirculation; 2007 Feb; 14(2):99-110. PubMed ID: 17365665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye and pit size are inversely correlated in crotalinae: Implications for selection pressure relaxation.
    Liu Y; Chen Q; Papenfuss TJ; Lu F; Tang Y
    J Morphol; 2016 Jan; 277(1):107-17. PubMed ID: 26442780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Debunking the viper's strike: harmless snakes kill a common assumption.
    Penning DA; Sawvel B; Moon BR
    Biol Lett; 2016 Mar; 12(3):20160011. PubMed ID: 26979562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis of infrared detection by snakes.
    Gracheva EO; Ingolia NT; Kelly YM; Cordero-Morales JF; Hollopeter G; Chesler AT; Sánchez EE; Perez JC; Weissman JS; Julius D
    Nature; 2010 Apr; 464(7291):1006-11. PubMed ID: 20228791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bionic research of pit vipers on infrared imaging.
    Zhang Z; Zhang Y; Zhang Q; Cheng T; Wu X
    Opt Express; 2015 Jul; 23(15):19299-317. PubMed ID: 26367591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of reptilian viviparity: a test of the maternal manipulation hypothesis in a temperate snake, Gloydius brevicaudus (Viperidae).
    Gao JF; Qu YF; Luo LG; Ji X
    Zoolog Sci; 2010 Mar; 27(3):248-55. PubMed ID: 20192693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-Deoxyglucose labelling of the infrared sensory system in the rattlesnake, Crotalus viridis.
    Gruberg ER; Newman EA; Hartline PH
    J Comp Neurol; 1984 Nov; 229(3):321-8. PubMed ID: 6501607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of infrared-sensitive tectal units of the pit viper Crotalus atrox to moving objects.
    Kaldenbach F; Bleckmann H; Kohl T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jun; 202(6):389-98. PubMed ID: 26906281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared Imaging: A Motion Detection Circuit for Rattlesnake Thermal Vision.
    Kelber A
    Curr Biol; 2019 Jun; 29(11):R403-R405. PubMed ID: 31163140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.