BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28855504)

  • 1. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.
    Ma J; Huang H; Xie Y; Liu Z; Zhao J; Zhang C; Jia Y; Zhang Y; Zhang H; Zhang T; Ju J
    Nat Commun; 2017 Aug; 8(1):391. PubMed ID: 28855504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antitubercular Ilamycins from Marine-Derived
    Sun C; Liu Z; Zhu X; Fan Z; Huang X; Wu Q; Zheng X; Qin X; Zhang T; Zhang H; Ju J; Ma J
    J Nat Prod; 2020 May; 83(5):1646-1657. PubMed ID: 32324401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Regulatory and Transporter Genes in the Biosynthesis of Anti-Tuberculosis Ilamycins and Production in a Heterologous Host.
    He J; Wei X; Yang Z; Li Y; Ju J; Ma J
    Mar Drugs; 2020 Apr; 18(4):. PubMed ID: 32316457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Mining of Streptomyces atratus SCSIO ZH16: Discovery of Atratumycin and Identification of Its Biosynthetic Gene Cluster.
    Sun C; Yang Z; Zhang C; Liu Z; He J; Liu Q; Zhang T; Ju J; Ma J
    Org Lett; 2019 Mar; 21(5):1453-1457. PubMed ID: 30746943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient ilamycins production utilizing Enteromorpha prolifera by metabolically engineered Streptomyces atratus.
    Jiang YX; Zheng GF; Chen LC; Yang N; Xin XJ; Ma JY; Ju JH; Wu H; Zhao M; Wang R; An FL
    Biotechnol Biofuels Bioprod; 2023 Oct; 16(1):151. PubMed ID: 37798770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial strategies for production improvement of anti-tuberculosis antibiotics ilamycins E
    Zhu Y; Zheng G; Xin X; Ma J; Ju J; An F
    Bioresour Bioprocess; 2022 Oct; 9(1):111. PubMed ID: 38647771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-Synthesis of Marine-Derived Ilamycin F Derivatives and Their Antitubercular Activities.
    Li J; Liu Z; Hong M; Sun C; Zhang T; Zhang H; Ju J; Ma J
    Front Chem; 2021; 9():774555. PubMed ID: 34778219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents.
    Pieroni M; Wan B; Cho S; Franzblau SG; Costantino G
    Eur J Med Chem; 2014 Jan; 72():26-34. PubMed ID: 24333612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medium optimization and subsequent fermentative regulation enabled the scaled-up production of anti-tuberculosis drug leads ilamycin-E1/E2.
    Fan Z; Tong N; Zhuang Z; Ma C; Ma J; Ju J; Duan Y; Zhu X
    Biotechnol J; 2022 Apr; 17(4):e2100427. PubMed ID: 35098690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluoroquinolone derivatives and their anti-tubercular activities.
    Fan YL; Wu JB; Cheng XW; Zhang FZ; Feng LS
    Eur J Med Chem; 2018 Feb; 146():554-563. PubMed ID: 29407980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hytramycins V and I, anti-Mycobacterium tuberculosis hexapeptides from a Streptomyces hygroscopicus strain.
    Cai G; Napolitano JG; McAlpine JB; Wang Y; Jaki BU; Suh JW; Yang SH; Lee IA; Franzblau SG; Pauli GF; Cho S
    J Nat Prod; 2013 Nov; 76(11):2009-18. PubMed ID: 24224794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-Phase Synthesis of Wollamide Cyclohexapeptide Analogs.
    Prior AM; Sun D
    Methods Mol Biol; 2020; 2103():175-187. PubMed ID: 31879925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triazole derivatives and their anti-tubercular activity.
    Zhang S; Xu Z; Gao C; Ren QC; Chang L; Lv ZS; Feng LS
    Eur J Med Chem; 2017 Sep; 138():501-513. PubMed ID: 28692915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, development of new synthetic methodology, and biological evaluation of substituted quinolines as new anti-tubercular leads.
    Tanwar B; Kumar A; Yogeeswari P; Sriram D; Chakraborti AK
    Bioorg Med Chem Lett; 2016 Dec; 26(24):5960-5966. PubMed ID: 27839684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and bioactivity of antitubercular peptides and peptidomimetics: an update.
    De Leon Rodriguez LM; Kaur H; Brimble MA
    Org Biomol Chem; 2016 Jan; 14(4):1177-87. PubMed ID: 26645944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances of pyrazole-containing derivatives as anti-tubercular agents.
    Xu Z; Gao C; Ren QC; Song XF; Feng LS; Lv ZS
    Eur J Med Chem; 2017 Oct; 139():429-440. PubMed ID: 28818767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents.
    Keri RS; Sasidhar BS; Nagaraja BM; Santos MA
    Eur J Med Chem; 2015 Jul; 100():257-69. PubMed ID: 26112067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of antitubercular 2,4-diphenyl-1H-imidazoles from chemical library repositioning and rational design.
    Pieroni M; Wan B; Zuliani V; Franzblau SG; Costantino G; Rivara M
    Eur J Med Chem; 2015 Jul; 100():44-9. PubMed ID: 26071857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments of coumarin-containing derivatives and their anti-tubercular activity.
    Hu YQ; Xu Z; Zhang S; Wu X; Ding JW; Lv ZS; Feng LS
    Eur J Med Chem; 2017 Aug; 136():122-130. PubMed ID: 28494250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.