BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28855507)

  • 1. The onset of widespread marine red beds and the evolution of ferruginous oceans.
    Song H; Jiang G; Poulton SW; Wignall PB; Tong J; Song H; An Z; Chu D; Tian L; She Z; Wang C
    Nat Commun; 2017 Aug; 8(1):399. PubMed ID: 28855507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Earth's youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean.
    Li ZQ; Zhang LC; Xue CJ; Zheng MT; Zhu MT; Robbins LJ; Slack JF; Planavsky NJ; Konhauser KO
    Sci Rep; 2018 Jul; 8(1):9970. PubMed ID: 29967405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stratified redox model for the Ediacaran ocean.
    Li C; Love GD; Lyons TW; Fike DA; Sessions AL; Chu X
    Science; 2010 Apr; 328(5974):80-3. PubMed ID: 20150442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oceanic oxygenation events in the anoxic Ediacaran ocean.
    Sahoo SK; Planavsky NJ; Jiang G; Kendall B; Owens JD; Wang X; Shi X; Anbar AD; Lyons TW
    Geobiology; 2016 Sep; 14(5):457-68. PubMed ID: 27027776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A record of deep-ocean dissolved O
    Stolper DA; Keller CB
    Nature; 2018 Jan; 553(7688):323-327. PubMed ID: 29310121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth.
    Rasmussen B; Fletcher IR; Bekker A; Muhling JR; Gregory CJ; Thorne AM
    Nature; 2012 Apr; 484(7395):498-501. PubMed ID: 22538613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widespread iron-rich conditions in the mid-Proterozoic ocean.
    Planavsky NJ; McGoldrick P; Scott CT; Li C; Reinhard CT; Kelly AE; Chu X; Bekker A; Love GD; Lyons TW
    Nature; 2011 Sep; 477(7365):448-51. PubMed ID: 21900895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution.
    Robbins LJ; Lalonde SV; Saito MA; Planavsky NJ; Mloszewska AM; Pecoits E; Scott C; Dupont CL; Kappler A; Konhauser KO
    Geobiology; 2013 Jul; 11(4):295-306. PubMed ID: 23601652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of iron and oxygen biogeochemical cycles during the Precambrian.
    Watanabe Y; Tajika E; Ozaki K
    Geobiology; 2023 Nov; 21(6):689-707. PubMed ID: 37622474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria.
    Maisch M; Wu W; Kappler A; Swanner ED
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transition to a sulphidic ocean approximately 1.84 billion years ago.
    Poulton SW; Fralick PW; Canfield DE
    Nature; 2004 Sep; 431(7005):173-7. PubMed ID: 15356628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.
    Sperling EA; Wolock CJ; Morgan AS; Gill BC; Kunzmann M; Halverson GP; Macdonald FA; Knoll AH; Johnston DT
    Nature; 2015 Jul; 523(7561):451-4. PubMed ID: 26201598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu isotopes in marine black shales record the Great Oxidation Event.
    Chi Fru E; Rodríguez NP; Partin CA; Lalonde SV; Andersson P; Weiss DJ; El Albani A; Rodushkin I; Konhauser KO
    Proc Natl Acad Sci U S A; 2016 May; 113(18):4941-6. PubMed ID: 27091980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferruginous conditions dominated later neoproterozoic deep-water chemistry.
    Canfield DE; Poulton SW; Knoll AH; Narbonne GM; Ross G; Goldberg T; Strauss H
    Science; 2008 Aug; 321(5891):949-52. PubMed ID: 18635761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions.
    Field EK; Kato S; Findlay AJ; MacDonald DJ; Chiu BK; Luther GW; Chan CS
    Geobiology; 2016 Sep; 14(5):499-508. PubMed ID: 27384464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate control on banded iron formations linked to orbital eccentricity.
    Lantink ML; Davies JHFL; Mason PRD; Schaltegger U; Hilgen FJ
    Nat Geosci; 2019 May; 12(5):369-374. PubMed ID: 31105765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A long-term record of early to mid-Paleozoic marine redox change.
    Sperling EA; Melchin MJ; Fraser T; Stockey RG; Farrell UC; Bhajan L; Brunoir TN; Cole DB; Gill BC; Lenz A; Loydell DK; Malinowski J; Miller AJ; Plaza-Torres S; Bock B; Rooney AD; Tecklenburg SA; Vogel JM; Planavsky NJ; Strauss JV
    Sci Adv; 2021 Jul; 7(28):. PubMed ID: 34233874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The deposition and significance of an Ediacaran non-glacial iron formation.
    Yang X; Mao J; Li R; Jiang Z; Yu M; Xu L; Reershemius T; Planavsky NJ
    Geobiology; 2023 Jan; 21(1):44-65. PubMed ID: 36200974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event.
    Konhauser KO; Pecoits E; Lalonde SV; Papineau D; Nisbet EG; Barley ME; Arndt NT; Zahnle K; Kamber BS
    Nature; 2009 Apr; 458(7239):750-3. PubMed ID: 19360085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery.
    Clarkson MO; Wood RA; Poulton SW; Richoz S; Newton RJ; Kasemann SA; Bowyer F; Krystyn L
    Nat Commun; 2016 Jul; 7():12236. PubMed ID: 27433855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.