BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 28855508)

  • 1. Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell.
    Bagdany M; Veit G; Fukuda R; Avramescu RG; Okiyoneda T; Baaklini I; Singh J; Sovak G; Xu H; Apaja PM; Sattin S; Beitel LK; Roldan A; Colombo G; Balch W; Young JC; Lukacs GL
    Nat Commun; 2017 Aug; 8(1):398. PubMed ID: 28855508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels.
    Saxena A; Banasavadi-Siddegowda YK; Fan Y; Bhattacharya S; Roy G; Giovannucci DR; Frizzell RA; Wang X
    J Biol Chem; 2012 Jun; 287(23):19158-70. PubMed ID: 22505710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein.
    Brown CR; Hong-Brown LQ; Biwersi J; Verkman AS; Welch WJ
    Cell Stress Chaperones; 1996 Jun; 1(2):117-25. PubMed ID: 9222597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone.
    Scott-Ward TS; Amaral MD
    FEBS J; 2009 Dec; 276(23):7097-109. PubMed ID: 19878303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calpain digestion and HSP90-based chaperone protection modulate the level of plasma membrane F508del-CFTR.
    Averna M; Stifanese R; Grosso R; Pedrazzi M; De Tullio R; Salamino F; Sparatore B; Pontremoli S; Melloni E
    Biochim Biophys Acta; 2011 Jan; 1813(1):50-9. PubMed ID: 21111762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.
    Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD
    Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CFTR and chaperones: processing and degradation.
    Amaral MD
    J Mol Neurosci; 2004; 23(1-2):41-8. PubMed ID: 15126691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrine modulates HSC70 levels and rescues ΔF508-CFTR.
    Basile A; Pascale M; Franceschelli S; Nieddu E; Mazzei MT; Fossa P; Turco MC; Mazzei M
    J Cell Physiol; 2012 Sep; 227(9):3317-23. PubMed ID: 22170045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis.
    Wang X; Venable J; LaPointe P; Hutt DM; Koulov AV; Coppinger J; Gurkan C; Kellner W; Matteson J; Plutner H; Riordan JR; Kelly JW; Yates JR; Balch WE
    Cell; 2006 Nov; 127(4):803-15. PubMed ID: 17110338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral protein quality control removes unfolded CFTR from the plasma membrane.
    Okiyoneda T; Barrière H; Bagdány M; Rabeh WM; Du K; Höhfeld J; Young JC; Lukacs GL
    Science; 2010 Aug; 329(5993):805-10. PubMed ID: 20595578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Binding of HSC70 and its Co-Chaperones to Structural Hotspots on CFTR.
    Baaklini I; Gonçalves CC; Lukacs GL; Young JC
    Sci Rep; 2020 Mar; 10(1):4176. PubMed ID: 32144307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of the Chaperone-Like HspB5 Rescues Trafficking and Function of F508del-CFTR.
    Degrugillier F; Aissat A; Prulière-Escabasse V; Bizard L; Simonneau B; Decrouy X; Jiang C; Rotin D; Fanen P; Simon S
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32650630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis.
    Pankow S; Bamberger C; Calzolari D; Martínez-Bartolomé S; Lavallée-Adam M; Balch WE; Yates JR
    Nature; 2015 Dec; 528(7583):510-6. PubMed ID: 26618866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator.
    Younger JM; Chen L; Ren HY; Rosser MF; Turnbull EL; Fan CY; Patterson C; Cyr DM
    Cell; 2006 Aug; 126(3):571-82. PubMed ID: 16901789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational disruption of the delta F508 cystic fibrosis transmembrane conductance regulator (CFTR)-molecular chaperone complex with geldanamycin stabilizes delta F508 CFTR in the rabbit reticulocyte lysate.
    Fuller W; Cuthbert AW
    J Biol Chem; 2000 Dec; 275(48):37462-8. PubMed ID: 10982807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis.
    Koulov AV; LaPointe P; Lu B; Razvi A; Coppinger J; Dong MQ; Matteson J; Laister R; Arrowsmith C; Yates JR; Balch WE
    Mol Biol Cell; 2010 Mar; 21(6):871-84. PubMed ID: 20089831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Molecular Chaperones for the Treatment of Cystic Fibrosis: Is It a Viable Approach?
    Heard A; Thompson J; Carver J; Bakey M; Wang XR
    Curr Drug Targets; 2015; 16(9):958-64. PubMed ID: 25981601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel natural product compound enhances cAMP-regulated chloride conductance of cells expressing CFTR[delta]F508.
    deCarvalho AC; Ndi CP; Tsopmo A; Tane P; Ayafor J; Connolly JD; Teem JL
    Mol Med; 2002 Feb; 8(2):75-87. PubMed ID: 12080183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chaperone trap contributes to the onset of cystic fibrosis.
    Coppinger JA; Hutt DM; Razvi A; Koulov AV; Pankow S; Yates JR; Balch WE
    PLoS One; 2012; 7(5):e37682. PubMed ID: 22701530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.