These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28855519)

  • 1. Spatial effects in meta-foodwebs.
    Barter E; Gross T
    Sci Rep; 2017 Aug; 7(1):9980. PubMed ID: 28855519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species.
    Amarasekare P; Nisbet RM
    Am Nat; 2001 Dec; 158(6):572-84. PubMed ID: 18707352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meta-food-chains as a many-layer epidemic process on networks.
    Barter E; Gross T
    Phys Rev E; 2016 Feb; 93(2):022303. PubMed ID: 26986348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Context-dependent colonization dynamics: Regional reward contagion drives local compression in aquatic beetles.
    Pintar MR; Resetarits WJ
    J Anim Ecol; 2017 Sep; 86(5):1124-1135. PubMed ID: 28542919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer networks reveal the spatial structure of seed-dispersal interactions across the Great Rift landscapes.
    Timóteo S; Correia M; Rodríguez-Echeverría S; Freitas H; Heleno R
    Nat Commun; 2018 Jan; 9(1):140. PubMed ID: 29321529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical spatial segregation of two Mediterranean vole species: the role of patch-network structure and matrix composition.
    Pita R; Lambin X; Mira A; Beja P
    Oecologia; 2016 Sep; 182(1):253-63. PubMed ID: 27167226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immigration rates and species niche characteristics affect the relationship between species richness and habitat heterogeneity in modeled meta-communities.
    Bar-Massada A
    PeerJ; 2015; 3():e832. PubMed ID: 25780779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modern models of trophic meta-communities.
    Gross T; Allhoff KT; Blasius B; Brose U; Drossel B; Fahimipour AK; Guill C; Yeakel JD; Zeng F
    Philos Trans R Soc Lond B Biol Sci; 2020 Dec; 375(1814):20190455. PubMed ID: 33131442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.
    Castillo JA; Epps CW; Jeffress MR; Ray C; Rodhouse TJ; Schwalm D
    Ecol Appl; 2016 Sep; 26(6):1660-1676. PubMed ID: 27755691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially structured metapopulation models: global and local assessment of metapopulation capacity.
    Ovaskainen O; Hanski I
    Theor Popul Biol; 2001 Dec; 60(4):281-302. PubMed ID: 11878830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The implications of model formulation when transitioning from spatial to landscape ecology.
    Cantrell RS; Cosner C; Fagan WF
    Math Biosci Eng; 2012 Jan; 9(1):27-60. PubMed ID: 22229395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anthropogenic landscape change promotes asymmetric dispersal and limits regional patch occupancy in a spatially structured bird population.
    Pavlacky DC; Possingham HP; Lowe AJ; Prentis PJ; Green DJ; Goldizen AW
    J Anim Ecol; 2012 Sep; 81(5):940-52. PubMed ID: 22489927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Diversity Loss of Competing Animal Species in Well-Connected Landscapes.
    Schippers P; Hemerik L; Baveco JM; Verboom J
    PLoS One; 2015; 10(7):e0132383. PubMed ID: 26218682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes.
    Wiedermann M; Donges JF; Kurths J; Donner RV
    Phys Rev E; 2016 Apr; 93():042308. PubMed ID: 27176313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of non-random dispersal strategies on spatial coexistence mechanisms.
    Amarasekare P
    J Anim Ecol; 2010 Jan; 79(1):282-93. PubMed ID: 19682160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metapopulation persistence in random fragmented landscapes.
    Grilli J; Barabás G; Allesina S
    PLoS Comput Biol; 2015 May; 11(5):e1004251. PubMed ID: 25993004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially embedded random networks.
    Barnett L; Di Paolo E; Bullock S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056115. PubMed ID: 18233726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A probabilistic approach to dispersal in spatially explicit meta-populations.
    Karnatak R; Wollrab S
    Sci Rep; 2020 Dec; 10(1):22234. PubMed ID: 33335189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersal-mediated coexistence of competing predators.
    Namba T; Hashimoto C
    Theor Popul Biol; 2004 Aug; 66(1):53-70. PubMed ID: 15225575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Do Landscape Structure, Management and Habitat Quality Drive the Colonization of Habitat Patches by the Dryad Butterfly (Lepidoptera: Satyrinae) in Fragmented Grassland?
    Kalarus K; Nowicki P
    PLoS One; 2015; 10(9):e0138557. PubMed ID: 26375036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.