These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28855527)

  • 1. Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore.
    Bell NAW; Chen K; Ghosal S; Ricci M; Keyser UF
    Nat Commun; 2017 Aug; 8(1):380. PubMed ID: 28855527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direction- and Salt-Dependent Ionic Current Signatures for DNA Sensing with Asymmetric Nanopores.
    Chen K; Bell NAW; Kong J; Tian Y; Keyser UF
    Biophys J; 2017 Feb; 112(4):674-682. PubMed ID: 28256227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanopore detection of double stranded DNA using a track-etched polycarbonate membrane.
    Kececi K; San N; Kaya D
    Talanta; 2015 Nov; 144():268-74. PubMed ID: 26452821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translocation of a polymer through a nanopore starting from a confining nanotube.
    Sean D; de Haan HW; Slater GW
    Electrophoresis; 2015 Mar; 36(5):682-91. PubMed ID: 25461428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forces affecting double-stranded DNA translocation through synthetic nanopores.
    Chen L; Conlisk AT
    Biomed Microdevices; 2011 Apr; 13(2):403-14. PubMed ID: 21279445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction prolonged DNA translocation through solid-state nanopores.
    Liang Z; Tang Z; Li J; Hu R; Yu D; Zhao Q
    Nanoscale; 2015 Jun; 7(24):10752-9. PubMed ID: 26035070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics study of DNA translocation through graphene nanopores.
    Li J; Zhang Y; Yang J; Bi K; Ni Z; Li D; Chen Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062707. PubMed ID: 23848715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Langevin dynamcis simulations of driven polymer translocation into a cross-linked gel.
    Sean D; Slater GW
    Electrophoresis; 2017 Mar; 38(5):653-658. PubMed ID: 28059440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Counting and dynamic studies of the small unilamellar phospholipid vesicle translocation with single conical glass nanopores.
    Chen L; He H; Jin Y
    Anal Chem; 2015 Jan; 87(1):522-9. PubMed ID: 25489990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore.
    Lv W; Liu S; Li X; Wu R
    Electrophoresis; 2014 Apr; 35(8):1144-51. PubMed ID: 24459097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained molecular dynamics simulation of DNA translocation in chemically modified nanopores.
    Ramachandran A; Guo Q; Iqbal SM; Liu Y
    J Phys Chem B; 2011 May; 115(19):6138-48. PubMed ID: 21526788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensing of protein molecules through nanopores: a molecular dynamics study.
    Kannam SK; Kim SC; Rogers PR; Gunn N; Wagner J; Harrer S; Downton MT
    Nanotechnology; 2014 Apr; 25(15):155502. PubMed ID: 24651263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic Kinetics of DNA Translocation through synthetic nanopores.
    Aksimentiev A; Heng JB; Timp G; Schulten K
    Biophys J; 2004 Sep; 87(3):2086-97. PubMed ID: 15345583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Charge Density-Dependent DNA Capture through Polymer Planar Nanopores.
    Jia Z; Choi J; Park S
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40927-40937. PubMed ID: 30371050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A large size-selective DNA nanopore with sensing applications.
    Thomsen RP; Malle MG; Okholm AH; Krishnan S; Bohr SS; Sørensen RS; Ries O; Vogel S; Simmel FC; Hatzakis NS; Kjems J
    Nat Commun; 2019 Dec; 10(1):5655. PubMed ID: 31827087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smooth DNA transport through a narrowed pore geometry.
    Carson S; Wilson J; Aksimentiev A; Wanunu M
    Biophys J; 2014 Nov; 107(10):2381-93. PubMed ID: 25418307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electro-hydrodynamics-based model for the ionic conductivity of solid-state nanopores during DNA translocation.
    Luan B; Stolovitzky G
    Nanotechnology; 2013 May; 24(19):195702. PubMed ID: 23579206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer translocation in solid-state nanopores: dependence of scaling behavior on pore dimensions and applied voltage.
    Edmonds CM; Hudiono YC; Ahmadi AG; Hesketh PJ; Nair S
    J Chem Phys; 2012 Feb; 136(6):065105. PubMed ID: 22360225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.