These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28855553)

  • 1. Toxic fluoride gas emissions from lithium-ion battery fires.
    Larsson F; Andersson P; Blomqvist P; Mellander BE
    Sci Rep; 2017 Aug; 7(1):10018. PubMed ID: 28855553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fire Tests on E-vehicle Battery Cells and Packs.
    Sturk D; Hoffmann L; Ahlberg Tidblad A
    Traffic Inj Prev; 2015; 16 Suppl 1():S159-64. PubMed ID: 25714114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation Study on Temperature Control Performance of Lithium-Ion Battery Fires by Fine Water Mist in Energy Storage Stations.
    Yao H; Lv K; Lou Z; Huang J; Zhang Y; Zhang Z; Wang M; Wei X
    ACS Omega; 2024 Jun; 9(25):27104-27112. PubMed ID: 38947830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO
    Peng Y; Yang L; Ju X; Liao B; Ye K; Li L; Cao B; Ni Y
    J Hazard Mater; 2020 Jan; 381():120916. PubMed ID: 31387075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicity Evaluation of Fire-Extinguishing Water from Large-Scale Battery and Battery Electric Vehicle Fire Tests.
    Quant M; Willstrand O; Mallin T; Hynynen J
    Environ Sci Technol; 2023 Mar; 57(12):4821-4830. PubMed ID: 36913186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Risk Assessment of Mine Lithium Battery Fire Based on Quantitative Factor Characterization.
    Li K; Wang Y; Zhang Y; Wang S; Zou X
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Author Correction: Toxic fluoride gas emissions from lithium-ion battery fires.
    Larsson F; Andersson P; Blomqvist P; Mellander BE
    Sci Rep; 2018 Mar; 8(1):5265. PubMed ID: 29567983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emissions from an automobile fire.
    Lönnermark A; Blomqvist P
    Chemosphere; 2006 Feb; 62(7):1043-56. PubMed ID: 15964054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New approaches to toxicity: a seven-gas predictive model and toxicant suppressants.
    Levin BC
    Drug Chem Toxicol; 1997 Nov; 20(4):271-80. PubMed ID: 9433656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium battery fires: implications for air medical transport.
    Thomas F; Mills G; Howe R; Zobell J
    Air Med J; 2012; 31(5):242-8. PubMed ID: 22938956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fire risk of portable batteries in their end-of-life: Investigation of the state of charge of waste lithium-ion batteries in Austria.
    Nigl T; Bäck T; Stuhlpfarrer S; Pomberger R
    Waste Manag Res; 2021 Sep; 39(9):1193-1199. PubMed ID: 33843368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the critical external heat leading to the failure of lithium-ion batteries.
    Tang W; Tam WC; Yuan L; Dubaniewicz T; Thomas R; Soles J
    Appl Therm Eng; 2020 Oct; 179():. PubMed ID: 34434069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.
    Dunn JB; Gaines L; Sullivan J; Wang MQ
    Environ Sci Technol; 2012 Nov; 46(22):12704-10. PubMed ID: 23075406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.
    Kim HC; Wallington TJ; Arsenault R; Bae C; Ahn S; Lee J
    Environ Sci Technol; 2016 Jul; 50(14):7715-22. PubMed ID: 27303957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the fire extinguishing effect of compressed nitrogen foam on 280 Ah lithium iron phosphate battery.
    Li X; Li X; Li C; Wu J; Liu B
    Heliyon; 2024 Jun; 10(11):e31920. PubMed ID: 38882383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure Assessment Study on Lithium-Ion Battery Fire in Explosion Test Room in Battery Testing Facility.
    Jo MS; Kim HP; Kim BW; Pleus RC; Faustman EM; Yu IJ
    Saf Health Work; 2024 Mar; 15(1):114-117. PubMed ID: 38496275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods.
    Wang Z; Yang H; Li Y; Wang G; Wang J
    J Hazard Mater; 2019 Nov; 379():120730. PubMed ID: 31252342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.