These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28855564)

  • 1. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe
    Li Q; Kartikowati CW; Horie S; Ogi T; Iwaki T; Okuyama K
    Sci Rep; 2017 Aug; 7(1):9894. PubMed ID: 28855564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of Enhancement of Orbital Magnetic Moment in SiO
    Dawn R; Tjiu WW; Aabdin Z; Faizal F; Panatarani C; Joni IM; Akhtar W; Kumar K; Rahaman A; Chandra G; Kandasami A; Amemiya K; Singh VR
    Langmuir; 2023 Oct; 39(39):13807-13819. PubMed ID: 37733972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds.
    Hui C; Shen C; Tian J; Bao L; Ding H; Li C; Tian Y; Shi X; Gao HJ
    Nanoscale; 2011 Feb; 3(2):701-5. PubMed ID: 21103488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic mesoporous bioactive glass for synergetic use in bone regeneration, hyperthermia treatment, and controlled drug delivery.
    Ur Rahman MS; Tahir MA; Noreen S; Yasir M; Ahmad I; Khan MB; Ali KW; Shoaib M; Bahadur A; Iqbal S
    RSC Adv; 2020 Jun; 10(36):21413-21419. PubMed ID: 35518733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapamycin loaded magnetic Fe3O4/carboxymethylchitosan nanoparticles as tumor-targeted drug delivery system: Synthesis and in vitro characterization.
    Li G; Cao L; Zhou Z; Chen Z; Huang Y; Zhao Y
    Colloids Surf B Biointerfaces; 2015 Apr; 128():379-388. PubMed ID: 25779605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step continuous synthesis of functionalized magnetite nanoflowers.
    Thomas G; Demoisson F; Chassagnon R; Popova E; Millot N
    Nanotechnology; 2016 Apr; 27(13):135604. PubMed ID: 26900748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic domain interactions of Fe
    Fuentes-García JA; Diaz-Cano AI; Guillen-Cervantes A; Santoyo-Salazar J
    Sci Rep; 2018 Mar; 8(1):5096. PubMed ID: 29572514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of magnetic gold nanoparticles to be used as doxorubicin nanocarriers.
    Elbialy NS; Fathy MM; Khalil WM
    Phys Med; 2014 Nov; 30(7):843-8. PubMed ID: 24950615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Tunability via Control of Crystallinity and Size in Polycrystalline Iron Oxide Nanoparticles.
    Nguyen MD; Deng L; Lee JM; Resendez KM; Fuller M; Hoijang S; Robles-Hernandez F; Chu CW; Litvinov D; Hadjiev VG; Xu S; Phan MH; Lee TR
    Small; 2024 Oct; 20(43):e2402940. PubMed ID: 39004867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Layer-by-Layer Self-Assembly toward Enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries.
    Li Z; Yuan D; Jin G; Tan BH; He C
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1842-53. PubMed ID: 26717323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The internal structure of magnetic nanoparticles determines the magnetic response.
    Pacakova B; Kubickova S; Salas G; Mantlikova AR; Marciello M; Morales MP; Niznansky D; Vejpravova J
    Nanoscale; 2017 Apr; 9(16):5129-5140. PubMed ID: 28387395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity.
    Sung Lee J; Myung Cha J; Young Yoon H; Lee JK; Keun Kim Y
    Sci Rep; 2015 Jul; 5():12135. PubMed ID: 26183842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Fe3O4 nanoparticles with tunable and uniform size through simple thermal decomposition.
    Wang D; Ma Q; Yang P
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6432-8. PubMed ID: 22962760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seeded growth of ferrite nanoparticles from Mn oxides: observation of anomalies in magnetic transitions.
    Song HM; Zink JI; Khashab NM
    Phys Chem Chem Phys; 2015 Jul; 17(28):18825-33. PubMed ID: 26123580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of annealing on magnetic properties of Ni80Fe20 permalloy nanoparticles prepared by polyol method.
    Qin GW; Pei WL; Ren YP; Shimada Y; Endo Y; Yamaguchi M; Okamoto S; Kitakami O
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10796-9. PubMed ID: 22408998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled synthesis of Au-Fe heterodimer nanoparticles and their conversion into Au-Fe
    Jiang G; Huang Y; Zhang S; Zhu H; Wu Z; Sun S
    Nanoscale; 2016 Oct; 8(41):17947-17952. PubMed ID: 27731449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle size matters in the formation of plasma protein coronas on Fe3O4 nanoparticles.
    Hu Z; Zhang H; Zhang Y; Wu R; Zou H
    Colloids Surf B Biointerfaces; 2014 Sep; 121():354-61. PubMed ID: 24974013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia.
    Ding Q; Liu D; Guo D; Yang F; Pang X; Che R; Zhou N; Xie J; Sun J; Huang Z; Gu N
    Biomaterials; 2017 Apr; 124():35-46. PubMed ID: 28187393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Polyol Composition on the Structural and Magnetic Properties of Magnetite Nanoparticles for Magnetic Particle Hyperthermia.
    Kotoulas A; Dendrinou-Samara C; Angelakeris M; Kalogirou O
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic and inorganic nano-Fe
    Mashjoor S; Yousefzadi M; Zolgharnain H; Kamrani E; Alishahi M
    Environ Pollut; 2018 Jun; 237():50-64. PubMed ID: 29474987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.