These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28855584)

  • 41. Deterministic Migration-Based Separation of White Blood Cells.
    Kim B; Choi YJ; Seo H; Shin EC; Choi S
    Small; 2016 Oct; 12(37):5159-5168. PubMed ID: 27490148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deformability-based cell classification and enrichment using inertial microfluidics.
    Hur SC; Henderson-MacLennan NK; McCabe ER; Di Carlo D
    Lab Chip; 2011 Mar; 11(5):912-20. PubMed ID: 21271000
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics.
    Ni C; Zhu Z; Zhou Z; Xiang N
    Methods Mol Biol; 2023; 2679():193-206. PubMed ID: 37300617
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section.
    Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Whole blood leukocytes isolation with microfabricated filter for cell analysis.
    Yu L; Warner P; Warner B; Recktenwald D; Yamanishi D; Guia A; Ghetti A
    Cytometry A; 2011 Dec; 79(12):1009-15. PubMed ID: 22110022
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.
    Antfolk M; Magnusson C; Augustsson P; Lilja H; Laurell T
    Anal Chem; 2015 Sep; 87(18):9322-8. PubMed ID: 26309066
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic aqueous two phase system for leukocyte concentration from whole blood.
    Soohoo JR; Walker GM
    Biomed Microdevices; 2009 Apr; 11(2):323-9. PubMed ID: 18937070
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy.
    Lee DH; Li X; Ma N; Digman MA; Lee AP
    Lab Chip; 2018 May; 18(9):1349-1358. PubMed ID: 29638231
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Micropump integrated white blood cell separation platform for detection of chronic granulomatous disease.
    Mane S; Behera A; Hemadri V; Bhand S; Tripathi S
    Mikrochim Acta; 2024 May; 191(5):295. PubMed ID: 38700804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Blood fractionation based on the extraction of the buffy-coat layer. Analysis of our results].
    Algora M; Torres P; Rodríguez MA; de la Calle C; Biurrún M; Nieto S; Ruiz M; Alonso MV
    Sangre (Barc); 1995 Apr; 40(2):91-6. PubMed ID: 7784953
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).
    Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI
    Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics.
    Sarkar A; Hou HW; Mahan AE; Han J; Alter G
    Sci Rep; 2016 Mar; 6():23589. PubMed ID: 27026280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic immunomagnetic cell separation from whole blood.
    Bhuvanendran Nair Gourikutty S; Chang CP; Puiu PD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Feb; 1011():77-88. PubMed ID: 26773879
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells.
    Zeming KK; Salafi T; Chen CH; Zhang Y
    Sci Rep; 2016 Mar; 6():22934. PubMed ID: 26961061
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation of tumor cells using size and deformation.
    Mohamed H; Murray M; Turner JN; Caggana M
    J Chromatogr A; 2009 Nov; 1216(47):8289-95. PubMed ID: 19497576
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sorting cells by size, shape and deformability.
    Beech JP; Holm SH; Adolfsson K; Tegenfeldt JO
    Lab Chip; 2012 Mar; 12(6):1048-51. PubMed ID: 22327631
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Dean-flow-coupled interfacial viscoelastic fluid for microparticle separation applied in a cell smear method.
    Shi X; Liu L; Cao W; Zhu G; Tan W
    Analyst; 2019 Oct; 144(20):5934-5946. PubMed ID: 31483419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous erythrocyte removal and leukocyte separation from whole blood based on viscoelastic cell focusing and the margination phenomenon.
    Nam J; Yoon J; Kim J; Jang WS; Lim CS
    J Chromatogr A; 2019 Jun; 1595():230-239. PubMed ID: 30772054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Label-free ferrohydrodynamic cell separation of circulating tumor cells.
    Zhao W; Cheng R; Jenkins BD; Zhu T; Okonkwo NE; Jones CE; Davis MB; Kavuri SK; Hao Z; Schroeder C; Mao L
    Lab Chip; 2017 Sep; 17(18):3097-3111. PubMed ID: 28809987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.