BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28855795)

  • 1. Reduction in ocular complement factor B protein in mice and monkeys by systemic administration of factor B antisense oligonucleotide.
    Grossman TR; Carrer M; Shen L; Johnson RB; Hettrick LA; Henry SP; Monia BP; McCaleb ML
    Mol Vis; 2017; 23():561-571. PubMed ID: 28855795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of Ocular Complement Activation by Inflammatory Stimuli and Intraocular Inhibition of Complement Factor D in Animal Models.
    Crowley MA; Delgado O; Will-Orrego A; Buchanan NM; Anderson K; Jaffee BD; Dryja TP; Liao SM
    Invest Ophthalmol Vis Sci; 2018 Feb; 59(2):940-951. PubMed ID: 29450541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the alternative complement pathway by antisense oligonucleotides targeting complement factor B improves lupus nephritis in mice.
    Grossman TR; Hettrick LA; Johnson RB; Hung G; Peralta R; Watt A; Henry SP; Adamson P; Monia BP; McCaleb ML
    Immunobiology; 2016 Jun; 221(6):701-8. PubMed ID: 26307001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of target mRNA reduction through in situ RNA hybridization in multiple organ systems following systemic antisense treatment in animals.
    Hung G; Xiao X; Peralta R; Bhattacharjee G; Murray S; Norris D; Guo S; Monia BP
    Nucleic Acid Ther; 2013 Dec; 23(6):369-78. PubMed ID: 24161045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local production of the alternative pathway component factor B is sufficient to promote laser-induced choroidal neovascularization.
    Schnabolk G; Coughlin B; Joseph K; Kunchithapautham K; Bandyopadhyay M; O'Quinn EC; Nowling T; Rohrer B
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(3):1850-63. PubMed ID: 25593023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-species comparison of in vivo PK/PD relationships for second-generation antisense oligonucleotides targeting apolipoprotein B-100.
    Yu RZ; Lemonidis KM; Graham MJ; Matson JE; Crooke RM; Tribble DL; Wedel MK; Levin AA; Geary RS
    Biochem Pharmacol; 2009 Mar; 77(5):910-9. PubMed ID: 19056355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Characterization of Hepatic Distribution and mRNA Reduction of Antisense Oligonucleotides Conjugated with Triantennary N-Acetyl Galactosamine and Lipophilic Ligands Targeting Apolipoprotein B.
    Watanabe A; Nakajima M; Kasuya T; Onishi R; Kitade N; Mayumi K; Ikehara T; Kugimiya A
    J Pharmacol Exp Ther; 2016 May; 357(2):320-30. PubMed ID: 26907624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic understanding for the greater sensitivity of monkeys to antisense oligonucleotide-mediated complement activation compared with humans.
    Shen L; Frazer-Abel A; Reynolds PR; Giclas PC; Chappell A; Pangburn MK; Younis H; Henry SP
    J Pharmacol Exp Ther; 2014 Dec; 351(3):709-17. PubMed ID: 25301170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacokinetic-pharmacodynamic modeling for reduction of hepatic apolipoprotein B mRNA and plasma total cholesterol after administration of antisense oligonucleotide in mice.
    Shimizu R; Kitade M; Kobayashi T; Hori S; Watanabe A
    J Pharmacokinet Pharmacodyn; 2015 Feb; 42(1):67-77. PubMed ID: 25376372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dose and plasma concentration on liver uptake and pharmacologic activity of a 2'-methoxyethyl modified chimeric antisense oligonucleotide targeting PTEN.
    Geary RS; Wancewicz E; Matson J; Pearce M; Siwkowski A; Swayze E; Bennett F
    Biochem Pharmacol; 2009 Aug; 78(3):284-91. PubMed ID: 19393225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Repeated Complement Activation Associated with Chronic Treatment of Cynomolgus Monkeys with 2'-O-Methoxyethyl Modified Antisense Oligonucleotide.
    Shen L; Engelhardt JA; Hung G; Yee J; Kikkawa R; Matson J; Tayefeh B; Machemer T; Giclas PC; Henry SP
    Nucleic Acid Ther; 2016 Aug; 26(4):236-49. PubMed ID: 27140858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antisense oligonucleotide treatment produces a type I interferon response that protects against diet-induced obesity.
    McCabe KM; Hsieh J; Thomas DG; Molusky MM; Tascau L; Feranil JB; Qiang L; Ferrante AW; Tall AR
    Mol Metab; 2020 Apr; 34():146-156. PubMed ID: 32180554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amyloid-beta up-regulates complement factor B in retinal pigment epithelial cells through cytokines released from recruited macrophages/microglia: Another mechanism of complement activation in age-related macular degeneration.
    Wang J; Ohno-Matsui K; Yoshida T; Shimada N; Ichinose S; Sato T; Mochizuki M; Morita I
    J Cell Physiol; 2009 Jul; 220(1):119-28. PubMed ID: 19277984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allele-Specific Inhibition of Rhodopsin With an Antisense Oligonucleotide Slows Photoreceptor Cell Degeneration.
    Murray SF; Jazayeri A; Matthes MT; Yasumura D; Yang H; Peralta R; Watt A; Freier S; Hung G; Adamson PS; Guo S; Monia BP; LaVail MM; McCaleb ML
    Invest Ophthalmol Vis Sci; 2015 Oct; 56(11):6362-75. PubMed ID: 26436889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1.
    Pandey SK; Wheeler TM; Justice SL; Kim A; Younis HS; Gattis D; Jauvin D; Puymirat J; Swayze EE; Freier SM; Bennett CF; Thornton CA; MacLeod AR
    J Pharmacol Exp Ther; 2015 Nov; 355(2):329-40. PubMed ID: 26330536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense oligonucleotides on neurobehavior, respiratory, and cardiovascular function, and hERG channel current studies.
    Kim TW; Kim KS; Seo JW; Park SY; Henry SP
    J Pharmacol Toxicol Methods; 2014; 69(1):49-60. PubMed ID: 24211663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical evaluation of the toxicological effects of a novel constrained ethyl modified antisense compound targeting signal transducer and activator of transcription 3 in mice and cynomolgus monkeys.
    Burel SA; Han SR; Lee HS; Norris DA; Lee BS; Machemer T; Park SY; Zhou T; He G; Kim Y; MacLeod AR; Monia BP; Lio S; Kim TW; Henry SP
    Nucleic Acid Ther; 2013 Jun; 23(3):213-27. PubMed ID: 23692080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the effects of chemically different linkers on hepatic accumulations, cell tropism and gene silencing ability of cholesterol-conjugated antisense oligonucleotides.
    Wada S; Yasuhara H; Wada F; Sawamura M; Waki R; Yamamoto T; Harada-Shiba M; Obika S
    J Control Release; 2016 Mar; 226():57-65. PubMed ID: 26855051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppressing transthyretin production in mice, monkeys and humans using 2nd-Generation antisense oligonucleotides.
    Ackermann EJ; Guo S; Benson MD; Booten S; Freier S; Hughes SG; Kim TW; Jesse Kwoh T; Matson J; Norris D; Yu R; Watt A; Monia BP
    Amyloid; 2016 Sep; 23(3):148-157. PubMed ID: 27355239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacokinetic and Pharmacodynamic Investigations of ION-353382, a Model Antisense Oligonucleotide: Using Alpha-2-Macroglobulin and Murinoglobulin Double-Knockout Mice.
    Shemesh CS; Yu RZ; Gaus HJ; Seth PP; Swayze EE; Bennett FC; Geary RS; Henry SP; Wang Y
    Nucleic Acid Ther; 2016 Aug; 26(4):223-35. PubMed ID: 27031383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.