These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28856039)

  • 1. Classification of biological micro-objects using optical coherence tomography: in silico study.
    Ossowski P; Wojtkowski M; Munro PR
    Biomed Opt Express; 2017 Aug; 8(8):3606-3626. PubMed ID: 28856039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup.
    Ossowski P; Raiter-Smiljanic A; Szkulmowska A; Bukowska D; Wiese M; Derzsi L; Eljaszewicz A; Garstecki P; Wojtkowski M
    Opt Express; 2015 Oct; 23(21):27724-38. PubMed ID: 26480435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional full wave model of image formation in optical coherence tomography.
    Munro PR
    Opt Express; 2016 Nov; 24(23):27016-27031. PubMed ID: 27857429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full wave model of image formation in optical coherence tomography applicable to general samples.
    Munro PR; Curatolo A; Sampson DD
    Opt Express; 2015 Feb; 23(3):2541-56. PubMed ID: 25836119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realistic simulation and experiment reveals the importance of scatterer microstructure in optical coherence tomography image formation.
    Ossowski P; Curatolo A; Sampson DD; Munro PRT
    Biomed Opt Express; 2018 Jul; 9(7):3122-3136. PubMed ID: 29984087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium.
    Tseng SH; Greene JH; Taflove A; Maitland D; Backman V; Walsh JT
    Opt Lett; 2004 Jun; 29(12):1393-5. PubMed ID: 15233446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography.
    Wang H; Magnain C; Sakadžić S; Fischl B; Boas DA
    Biomed Opt Express; 2017 Dec; 8(12):5617-5636. PubMed ID: 29296492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximate image synthesis in optical coherence tomography.
    Macdonald CM; Munro PRT
    Biomed Opt Express; 2021 Jun; 12(6):3323-3337. PubMed ID: 34221663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New technology for high-speed and high-resolution optical coherence tomography.
    Fujimoto JG; Bouma B; Tearney GJ; Boppart SA; Pitris C; Southern JF; Brezinski ME
    Ann N Y Acad Sci; 1998 Feb; 838():95-107. PubMed ID: 9511798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography.
    Xi C; Marks DL; Parikh DS; Raskin L; Boppart SA
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7516-21. PubMed ID: 15136742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional visualization of objects in scattering medium by use of computational integral imaging.
    Moon I; Javidi B
    Opt Express; 2008 Aug; 16(17):13080-9. PubMed ID: 18711547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources.
    Dhalla AH; Migacz JV; Izatt JA
    Opt Lett; 2010 Jul; 35(13):2305-7. PubMed ID: 20596228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.
    Grieve K; Paques M; Dubois A; Sahel J; Boccara C; Le Gargasson JF
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Coherence Tomography-Based Scattering Properties of Retinal Vessels in Glaucoma Patients.
    Kromer R; Boelefahr S; Eck B; Rahman S; Klemm M
    Curr Eye Res; 2018 Apr; 43(4):503-510. PubMed ID: 29199863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninterferometric characterization of partially coherent scalar wave fields and application to scattered light.
    Aruldoss CK; Dragomir NM; Roberts A
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3189-97. PubMed ID: 17912309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Texture analysis of speckle in optical coherence tomography images of tissue phantoms.
    Gossage KW; Smith CM; Kanter EM; Hariri LP; Stone AL; Rodriguez JJ; Williams SK; Barton JK
    Phys Med Biol; 2006 Mar; 51(6):1563-75. PubMed ID: 16510963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature space optical coherence tomography based micro-angiography.
    Zhang A; Wang RK
    Biomed Opt Express; 2015 May; 6(5):1919-28. PubMed ID: 26137391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited].
    de Boer JF; Leitgeb R; Wojtkowski M
    Biomed Opt Express; 2017 Jul; 8(7):3248-3280. PubMed ID: 28717565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.