These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28856039)

  • 41. Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions.
    Pan Y; Farkas DL
    J Biomed Opt; 1998 Oct; 3(4):446-55. PubMed ID: 23015145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theoretical model of optical coherence tomography for system optimization and characterization.
    Feng Y; Wang RK; Elder JB
    J Opt Soc Am A Opt Image Sci Vis; 2003 Sep; 20(9):1792-803. PubMed ID: 12968652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Feasibility of optical coherence tomography imaging to characterize renal neoplasms: limitations in resolution and depth of penetration.
    Linehan JA; Bracamonte ER; Hariri LP; Sokoloff MH; Rice PS; Barton JK; Nguyen MM
    BJU Int; 2011 Dec; 108(11):1820-4. PubMed ID: 21592299
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple and dependent scattering effects in Doppler optical coherence tomography.
    Kalkman J; Bykov AV; Faber DJ; van Leeuwen TG
    Opt Express; 2010 Feb; 18(4):3883-92. PubMed ID: 20389399
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea.
    Wang S; Larin KV
    Biomed Opt Express; 2014 Nov; 5(11):3807-21. PubMed ID: 25426312
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optical coherence tomography for neurosurgical imaging of human intracortical melanoma.
    Boppart SA; Brezinski ME; Pitris C; Fujimoto JG
    Neurosurgery; 1998 Oct; 43(4):834-41. PubMed ID: 9766311
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography.
    Zhang A; Zhang Q; Wang RK
    Biomed Opt Express; 2015 Oct; 6(10):4130-43. PubMed ID: 26504660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth.
    Mo J; de Groot M; de Boer JF
    Opt Express; 2015 Feb; 23(4):4935-45. PubMed ID: 25836528
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic light scattering arising from flowing Brownian particles: analytical model in optical coherence tomography conditions.
    Popov I; Weatherbee AS; Vitkin IA
    J Biomed Opt; 2014 Dec; 19(12):127004. PubMed ID: 25517256
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies.
    Turchin IV; Sergeeva EA; Dolin LS; Kamensky VA; Shakhova NM; Richards-Kortum R
    J Biomed Opt; 2005; 10(6):064024. PubMed ID: 16409089
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional imaging of cystoid macular edema in retinal vein occlusion.
    Yamaike N; Tsujikawa A; Ota M; Sakamoto A; Kotera Y; Kita M; Miyamoto K; Yoshimura N; Hangai M
    Ophthalmology; 2008 Feb; 115(2):355-362.e2. PubMed ID: 17675242
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue.
    Böhringer HJ; Boller D; Leppert J; Knopp U; Lankenau E; Reusche E; Hüttmann G; Giese A
    Lasers Surg Med; 2006 Jul; 38(6):588-97. PubMed ID: 16736504
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Diagnostic Role of Optical Coherence Tomography (OCT) in Measuring the Depth of Burn and Traumatic Scars for More Accurate Laser Dosimetry: Pilot Study.
    Waibel JS; Rudnick AC; Wulkan AJ; Holmes JD
    J Drugs Dermatol; 2016 Nov; 15(11):1375-1380. PubMed ID: 28095550
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Light scattering from edematous human corneal grafts' microstructure: experimental study and electromagnetic modelization.
    Casadessus O; Georges G; Lamoine LS; Deumié C; Hoffart L
    Biomed Opt Express; 2012 Aug; 3(8):1793-810. PubMed ID: 22876345
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wave-optical modeling beyond the thin-element-approximation.
    Schmidt S; Tiess T; Schröter S; Hambach R; Jäger M; Bartelt H; Tünnermann A; Gross H
    Opt Express; 2016 Dec; 24(26):30188-30200. PubMed ID: 28059295
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anterior chamber width measurement by high-speed optical coherence tomography.
    Goldsmith JA; Li Y; Chalita MR; Westphal V; Patil CA; Rollins AM; Izatt JA; Huang D
    Ophthalmology; 2005 Feb; 112(2):238-44. PubMed ID: 15691557
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic Optical Coherence Tomography Capillaroscopy: A New Imaging Tool in Autoimmune Connective Tissue Disease.
    Ring HC; Themstrup L; Banzhaf CA; Jemec GB; Mogensen M
    JAMA Dermatol; 2016 Oct; 152(10):. PubMed ID: 27366896
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2013 Nov; 40(11):111910. PubMed ID: 24320443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.