These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28856045)

  • 1. In-silico and in-vitro investigation of a photonic monitor for intestinal perfusion and oxygenation.
    Robinson MB; Butcher RJ; Wilson MA; Ericson MN; Coté GL
    Biomed Opt Express; 2017 Aug; 8(8):3714-3734. PubMed ID: 28856045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo performance of a visible wavelength optical sensor for monitoring intestinal perfusion and oxygenation.
    Robinson MB; Wisniowiecki AM; Butcher RJ; Wilson MA; Nance Ericson M; Cote GL
    J Biomed Opt; 2018 May; 23(5):1-12. PubMed ID: 29777581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico and in vivo investigations using an endocavitary photoplethysmography sensor for tissue viability monitoring.
    Chatterjee S; Patel Z; Thaha MA; Kyriacou PA
    J Biomed Opt; 2020 Feb; 25(2):1-16. PubMed ID: 32112542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal perfusion monitoring using photoplethysmography.
    Akl TJ; Wilson MA; Ericson MN; Coté GL
    J Biomed Opt; 2013 Aug; 18(8):87005. PubMed ID: 23942635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model.
    Chatterjee S; Budidha K; Kyriacou PA
    Physiol Meas; 2020 Sep; 41(8):084001. PubMed ID: 32585642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic phantom mimicking optical properties of porcine livers.
    Long R; King T; Akl T; Ericson MN; Wilson M; Coté GL; McShane MJ
    Biomed Opt Express; 2011 Jul; 2(7):1877-92. PubMed ID: 21750766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion.
    Chatterjee S; Abay TY; Phillips JP; Kyriacou PA
    J Biomed Opt; 2018 Jul; 23(7):1-11. PubMed ID: 29998648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing probe design for an implantable perfusion and oxygenation sensor.
    Akl TJ; Long R; McShane MJ; Ericson MN; Wilson MA; Coté GL
    Biomed Opt Express; 2011 Aug; 2(8):2096-109. PubMed ID: 21833350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of a noninvasive optical photoplethysmography imaging device with dynamic tissue phantom models.
    Nwafor CI; Plant KD; King DR; McCall BP; Squiers JJ; Fan W; DiMaio JM; Thatcher JE
    J Biomed Opt; 2017 Sep; 22(9):1-9. PubMed ID: 28895317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multilayer Monte Carlo Analysis of Optical Interactions in Reflectance Neck Photoplethysmography.
    Patel Z; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():850-853. PubMed ID: 36085757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and
    Dunn CE; Lertsakdadet B; Crouzet C; Bahani A; Choi B
    Biomed Opt Express; 2018 Sep; 9(9):4306-4316. PubMed ID: 30615714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing motion artifacts in photoplethysmograms by using relative sensor motion: phantom study.
    Wijshoff RW; Mischi M; Veen J; van der Lee AM; Aarts RM
    J Biomed Opt; 2012 Nov; 17(11):117007. PubMed ID: 23192359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoplethysmography.
    Alian AA; Shelley KH
    Best Pract Res Clin Anaesthesiol; 2014 Dec; 28(4):395-406. PubMed ID: 25480769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organ S values and effective doses for family members exposed to adult patients following I-131 treatment: a Monte Carlo simulation study.
    Han EY; Lee C; Mcguire L; Brown TL; Bolch WE
    Med Phys; 2013 Aug; 40(8):083901. PubMed ID: 23927361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the origin of remote PPG signals in visible light and infrared.
    Moço AV; Stuijk S; de Haan G
    Sci Rep; 2018 May; 8(1):8501. PubMed ID: 29855610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a portable phantom device to simulate tissue oxygenation and blood perfusion.
    Lv X; Chen H; Liu G; Shen S; Wu Q; Hu C; Li J; Dong E; Xu RX
    Appl Opt; 2018 May; 57(14):3938-3946. PubMed ID: 29791363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-wavelength photoplethysmography method for skin arterial pulse extraction.
    Liu J; Yan BP; Dai WX; Ding XR; Zhang YT; Zhao N
    Biomed Opt Express; 2016 Oct; 7(10):4313-4326. PubMed ID: 27867733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.