These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28856056)

  • 1. Improving mesoscopic fluorescence molecular tomography through data reduction.
    Yang F; Ozturk MS; Yao R; Intes X
    Biomed Opt Express; 2017 Aug; 8(8):3868-3881. PubMed ID: 28856056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving mesoscopic fluorescence molecular tomography via preconditioning and regularization.
    Yang F; Yao R; Ozturk M; Faulkner D; Qu Q; Intes X
    Biomed Opt Express; 2018 Jun; 9(6):2765-2778. PubMed ID: 30258689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating vasculature imaging in tumor using mesoscopic fluorescence molecular tomography via a hybrid reconstruction strategy.
    Yang F; Gong X; Faulkner D; Gao S; Yao R; Zhang Y; Intes X
    Biochem Biophys Res Commun; 2021 Jul; 562():29-35. PubMed ID: 34030042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. System configuration optimization for mesoscopic fluorescence molecular tomography.
    Yang F; Faulkner D; Yao R; Ozturk MS; Qu Q; Intes X
    Biomed Opt Express; 2019 Nov; 10(11):5660-5674. PubMed ID: 31799038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction.
    Cao X; Wang X; Zhang B; Liu F; Luo J; Bai J
    Biomed Opt Express; 2013 Jan; 4(1):1-14. PubMed ID: 23304643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.
    Ozturk MS; Chen CW; Ji R; Zhao L; Nguyen BN; Fisher JP; Chen Y; Intes X
    Ann Biomed Eng; 2016 Mar; 44(3):667-79. PubMed ID: 26645079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration of dynamic fluorescence molecular tomography with principal component analysis.
    Zhang G; He W; Pu H; Liu F; Chen M; Bai J; Luo J
    Biomed Opt Express; 2015 Jun; 6(6):2036-55. PubMed ID: 26114027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patch based reconstruction of undersampled data (PROUD) for high signal-to-noise ratio and high frame rate contrast enhanced liver imaging.
    Cooper MA; Nguyen TD; Xu B; Prince MR; Elad M; Wang Y; Spincemaille P
    Magn Reson Med; 2015 Dec; 74(6):1587-97. PubMed ID: 25483782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based mesoscopic fluorescence molecular tomography: an
    Long F
    J Med Imaging (Bellingham); 2018 Jul; 5(3):036001. PubMed ID: 30840720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and characterization of a time-domain optical tomography platform for mesoscopic lifetime imaging.
    Gao S; Li M; Smith JT; Intes X
    Biomed Opt Express; 2022 Sep; 13(9):4637-4651. PubMed ID: 36187247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cone-beam breast computed tomography with a displaced flat panel detector array.
    Mettivier G; Russo P; Lanconelli N; Meo SL
    Med Phys; 2012 May; 39(5):2805-19. PubMed ID: 22559652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha image reconstruction (AIR): a new iterative CT image reconstruction approach using voxel-wise alpha blending.
    Hofmann C; Sawall S; Knaup M; Kachelrieß M
    Med Phys; 2014 Jun; 41(6):061914. PubMed ID: 24877825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a novel collimator for molecular breast tomosynthesis.
    Gilland DR; Welch BL; Lee S; Kross B; Weisenberger AG
    Med Phys; 2017 Nov; 44(11):5740-5748. PubMed ID: 28877351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v.
    Lim K; Kwon H; Cho J; Oh J; Yoon S; Kang M; Ha D; Lee J; Kang E
    J Comput Assist Tomogr; 2015; 39(3):443-8. PubMed ID: 25654782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method.
    Ye J; Chi C; Xue Z; Wu P; An Y; Xu H; Zhang S; Tian J
    Biomed Opt Express; 2014 Feb; 5(2):387-406. PubMed ID: 24575335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A practical way to improve contrast-to-noise ratio and quantitation for statistical-based iterative reconstruction in whole-body PET imaging.
    Fin L; Bailly P; Daouk J; Meyer ME
    Med Phys; 2009 Jul; 36(7):3072-9. PubMed ID: 19673206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy.
    Li H; Dolly S; Chen HC; Anastasio MA; Low DA; Li HH; Michalski JM; Thorstad WL; Gay H; Mutic S
    J Appl Clin Med Phys; 2016 Jul; 17(4):377-390. PubMed ID: 27455472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced acquisition time for L-shell x-ray fluorescence computed tomography using polycapillary x-ray optics.
    Vernekohl D; Ahmad M; Dai X; Zhao W; Cheng K; Xing L
    Med Phys; 2019 Dec; 46(12):5696-5702. PubMed ID: 31512753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ray profile modeling on resolution recovery in clinical CT.
    Hofmann C; Knaup M; Kachelrieß M
    Med Phys; 2014 Feb; 41(2):021907. PubMed ID: 24506628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.