These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 28856363)
41. Vacancies in solids and the stability of surface morphology. McCarty KF; Nobel JA; Bartelt NC Nature; 2001 Aug; 412(6847):622-5. PubMed ID: 11493916 [TBL] [Abstract][Full Text] [Related]
42. Modelling the chemistry of Mn-doped MgO for bulk and (100) surfaces. Logsdail AJ; Downing CA; Keal TW; Sherwood P; Sokol AA; Catlow CR Phys Chem Chem Phys; 2016 Oct; 18(41):28648-28660. PubMed ID: 27722292 [TBL] [Abstract][Full Text] [Related]
43. Factors Governing Oxygen Vacancy Formation in Oxide Perovskites. Wexler RB; Gautam GS; Stechel EB; Carter EA J Am Chem Soc; 2021 Aug; 143(33):13212-13227. PubMed ID: 34428909 [TBL] [Abstract][Full Text] [Related]
44. An X-ray absorption spectroscopic study on mixed conductive La0.6Sr0.4Co0.8Fe0.2O(3-δ) cathodes. I. Electrical conductivity and electronic structure. Orikasa Y; Ina T; Nakao T; Mineshige A; Amezawa K; Oishi M; Arai H; Ogumi Z; Uchimoto Y Phys Chem Chem Phys; 2011 Oct; 13(37):16637-43. PubMed ID: 21850304 [TBL] [Abstract][Full Text] [Related]
45. Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first-principles study. Yang Z; Woo TK; Baudin M; Hermansson K J Chem Phys; 2004 Apr; 120(16):7741-9. PubMed ID: 15267687 [TBL] [Abstract][Full Text] [Related]
46. First-principles calculations of oxygen vacancy formation and metallic behavior at a β-MnO2 grain boundary. Dawson JA; Chen H; Tanaka I ACS Appl Mater Interfaces; 2015 Jan; 7(3):1726-34. PubMed ID: 25559707 [TBL] [Abstract][Full Text] [Related]
48. Structural, electronic and magnetic properties of V(2)O(5-x): An ab initio study. Xiao ZR; Guo GY J Chem Phys; 2009 Jun; 130(21):214704. PubMed ID: 19508084 [TBL] [Abstract][Full Text] [Related]
49. Electrochemical Polarization Dependence of the Elastic and Electrostatic Driving Forces to Aliovalent Dopant Segregation on LaMnO Kim D; Bliem R; Hess F; Gallet JJ; Yildiz B J Am Chem Soc; 2020 Feb; 142(7):3548-3563. PubMed ID: 31935081 [TBL] [Abstract][Full Text] [Related]
50. Vacancy segregation in the initial oxidation stages of the TiN(100) surface. Zimmermann J; Finnis MW; Ciacchi LC J Chem Phys; 2009 Apr; 130(13):134714. PubMed ID: 19355771 [TBL] [Abstract][Full Text] [Related]
51. Electron dynamics in dye-sensitized solar cells: effects of surface terminations and defects. Li Z; Zhang X; Lu G J Phys Chem B; 2010 Dec; 114(51):17077-83. PubMed ID: 21133385 [TBL] [Abstract][Full Text] [Related]
52. Density functional study of the stability of various α-Bi2O3 surfaces. Lei YH; Chen ZX J Chem Phys; 2013 Feb; 138(5):054703. PubMed ID: 23406137 [TBL] [Abstract][Full Text] [Related]
53. Ab initio cluster calculations on the electronic structure of oxygen vacancies at the polar ZnO(0001) surface and on the adsorption of H2, CO, and CO2 at these sites. Fink K Phys Chem Chem Phys; 2006 Apr; 8(13):1482-9. PubMed ID: 16633631 [TBL] [Abstract][Full Text] [Related]
54. Healing of oxygen vacancies on reduced surfaces of gold-doped ceria. Nolan M J Chem Phys; 2009 Apr; 130(14):144702. PubMed ID: 19368460 [TBL] [Abstract][Full Text] [Related]
55. Dislocations in SrTiO3: easy to reduce but not so fast for oxygen transport. Marrocchelli D; Sun L; Yildiz B J Am Chem Soc; 2015 Apr; 137(14):4735-48. PubMed ID: 25751017 [TBL] [Abstract][Full Text] [Related]
56. Ab initio energetics of lanthanum substitution in ferroelectric bismuth titanate. Shah SH; Bristowe PD J Phys Condens Matter; 2011 Apr; 23(15):155902. PubMed ID: 21460424 [TBL] [Abstract][Full Text] [Related]
57. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y Ai N; Li N; Rickard WD; Cheng Y; Chen K; Jiang SP ChemSusChem; 2017 Mar; 10(5):993-1003. PubMed ID: 28220997 [TBL] [Abstract][Full Text] [Related]
58. Room-temperature ferromagnetism in thin films of LaMnO3 deposited by a chemical method over large areas. Vila-Fungueiriño JM; Rivas-Murias B; Rodríguez-González B; Txoperena O; Ciudad D; Hueso LE; Lazzari M; Rivadulla F ACS Appl Mater Interfaces; 2015 Mar; 7(9):5410-4. PubMed ID: 25667996 [TBL] [Abstract][Full Text] [Related]
59. A theoretical study of water adsorption and decomposition on low-index spinel ZnGa2O4 surfaces: correlation between surface structure and photocatalytic properties. Jia C; Fan W; Yang F; Zhao X; Sun H; Li P; Liu L Langmuir; 2013 Jun; 29(23):7025-37. PubMed ID: 23682995 [TBL] [Abstract][Full Text] [Related]
60. The effect of oxygen vacancies on water wettability of a ZnO surface. Hu H; Ji HF; Sun Y Phys Chem Chem Phys; 2013 Oct; 15(39):16557-65. PubMed ID: 23949186 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]