These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28856872)

  • 21. Robust autofocusing for scanning electron microscopy based on a dual deep learning network.
    Lee W; Nam HS; Kim YG; Kim YJ; Lee JH; Yoo H
    Sci Rep; 2021 Oct; 11(1):20933. PubMed ID: 34686722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing.
    Hu L; Hu S; Li Y; Gong W; Si K
    J Biophotonics; 2020 Jan; 13(1):e201900245. PubMed ID: 31622537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research on Optical Metrology for Complex Optical Surfaces with Focal Plane Wavefront Sensing.
    Ma X; Wang J; Wang B; Liu X; Chen Y
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Innovative Image Processing Method to Improve Autofocusing Accuracy.
    Liu CS; Tu HD
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808552
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-cost whole slide imaging system with single-shot autofocusing based on color-multiplexed illumination and deep learning.
    Xin K; Jiang S; Chen X; He Y; Zhang J; Wang H; Liu H; Peng Q; Zhang Y; Ji X
    Biomed Opt Express; 2021 Sep; 12(9):5644-5657. PubMed ID: 34692206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Digital holographic microscopy and focusing methods based on image sharpness.
    İlhan HA; Doğar M; Özcan M
    J Microsc; 2014 Sep; 255(3):138-49. PubMed ID: 24894875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feature-based phase retrieval wavefront sensing approach using machine learning.
    Ju G; Qi X; Ma H; Yan C
    Opt Express; 2018 Nov; 26(24):31767-31783. PubMed ID: 30650757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Halton sampling for autofocus.
    Pengo T; Muñoz-Barrutia A; Ortiz-De-Solórzano C
    J Microsc; 2009 Jul; 235(1):50-8. PubMed ID: 19566626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autofocus methods based on laser illumination.
    Hua Z; Zhang X; Tu D
    Opt Express; 2023 Aug; 31(18):29465-29479. PubMed ID: 37710746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Establishment of hybridized focus measure functions as a universal method for autofocusing.
    Shah MI; Mishra S; Rout C
    J Biomed Opt; 2017 Dec; 22(12):1-12. PubMed ID: 29274142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fast autofocusing based on single-pixel moment detection.
    Chen H; Shi D; Guo Z; Jiang R; Zha L; Wang Y; Flusser J
    Commun Eng; 2024 Oct; 3(1):140. PubMed ID: 39384858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soft X-ray wavefront sensing at an ellipsoidal mirror shell.
    Braig C; Probst J; Löchel H; Pina L; Krist T; Seifert C
    J Synchrotron Radiat; 2024 Jul; 31(Pt 4):690-697. PubMed ID: 38843002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic autofocus for continuous-scanning time-delay-and-integration image acquisition in automated microscopy.
    Bravo-Zanoguera ME; Laris CA; Nguyen LK; Oliva M; Price JH
    J Biomed Opt; 2007; 12(3):034011. PubMed ID: 17614719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative evaluation of autofocus algorithms for a real-time system for automatic detection of Mycobacterium tuberculosis.
    Mateos-Pérez JM; Redondo R; Nava R; Valdiviezo JC; Cristóbal G; Escalante-Ramírez B; Ruiz-Serrano MJ; Pascau J; Desco M
    Cytometry A; 2012 Mar; 81(3):213-21. PubMed ID: 22290716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bionic vision autofocus method based on a liquid lens.
    Liu Z; Hong H; Gan Z; Xing K
    Appl Opt; 2022 Sep; 61(26):7692-7705. PubMed ID: 36256370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compact devices for generating multi-focus autofocusing optical beams in free space.
    Liu Z; Chen Y; Lin S; Wen Y
    Opt Lett; 2021 Aug; 46(15):3524-3527. PubMed ID: 34329215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A self-adaptive and nonmechanical motion autofocusing system for optical microscopes.
    Qu Y; Zhu S; Zhang P
    Microsc Res Tech; 2016 Nov; 79(11):1112-1122. PubMed ID: 27582009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Focus-drift correction in time-lapse confocal imaging.
    Kreft M; Stenovec M; Zorec R
    Ann N Y Acad Sci; 2005 Jun; 1048():321-30. PubMed ID: 16154944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Opposite-view digital holographic microscopy with autofocusing capability.
    Zheng J; Gao P; Shao X
    Sci Rep; 2017 Jun; 7(1):4255. PubMed ID: 28652591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Curvature wavefront sensing based on a single defocused image and intensity compensation.
    Wu Z; Bai H; Cui X
    Appl Opt; 2016 Apr; 55(10):2791-9. PubMed ID: 27139686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.