These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 28857338)

  • 21. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants.
    Osakabe Y; Watanabe T; Sugano SS; Ueta R; Ishihara R; Shinozaki K; Osakabe K
    Sci Rep; 2016 May; 6():26685. PubMed ID: 27226176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-Cas9-Mediated Gene Knockout in a Non-Model Sea Urchin,
    Sakamoto N; Watanabe K; Awazu A; Yamamoto T
    Zoolog Sci; 2024 Apr; 41(2):159-166. PubMed ID: 38587910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system.
    Su X; Cui K; Du S; Li H; Lu F; Shi D; Liu Q
    In Vitro Cell Dev Biol Anim; 2018 May; 54(5):375-383. PubMed ID: 29556895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing.
    Chadwick AC; Wang X; Musunuru K
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1741-1747. PubMed ID: 28751571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans.
    Li W; Ou G
    Genesis; 2016 Apr; 54(4):170-81. PubMed ID: 26934570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-Cas9: from Genome Editing to Cancer Research.
    Chen S; Sun H; Miao K; Deng CX
    Int J Biol Sci; 2016; 12(12):1427-1436. PubMed ID: 27994508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Mitochondrial Genome Editing by CRISPR/Cas9.
    Jo A; Ham S; Lee GH; Lee YI; Kim S; Lee YS; Shin JH; Lee Y
    Biomed Res Int; 2015; 2015():305716. PubMed ID: 26448933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Establishment of knockout adult sea urchins by using a CRISPR-Cas9 system.
    Liu D; Awazu A; Sakuma T; Yamamoto T; Sakamoto N
    Dev Growth Differ; 2019 Aug; 61(6):378-388. PubMed ID: 31359433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR-Cas9-mediated gene editing in human MPS I fibroblasts.
    de Carvalho TG; Schuh R; Pasqualim G; Pellenz FM; Filippi-Chiela EC; Giugliani R; Baldo G; Matte U
    Gene; 2018 Dec; 678():33-37. PubMed ID: 30081189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds.
    Li C; Zong Y; Jin S; Zhu H; Lin D; Li S; Qiu JL; Wang Y; Gao C
    Genome Biol; 2020 Jun; 21(1):141. PubMed ID: 32546280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development.
    Cui M; Lin CY; Su YH
    Brief Funct Genomics; 2017 Sep; 16(5):309-318. PubMed ID: 28605407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR: MODIFYING THE LIFE SCIENCE LANDSCAPE.
    Blow N
    Biotechniques; 2016; 61(5):225-231. PubMed ID: 27839507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
    Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT
    Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.
    Rivera-Torres N; Banas K; Bialk P; Bloh KM; Kmiec EB
    PLoS One; 2017; 12(1):e0169350. PubMed ID: 28052104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9.
    Feng Y; Chen C; Han Y; Chen Z; Lu X; Liang F; Li S; Qin W; Lin S
    G3 (Bethesda); 2016 Aug; 6(8):2517-21. PubMed ID: 27317783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots.
    Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W
    PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon.
    Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H
    J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.