These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 28857387)
1. Profiling of glycan alterations in regrowing limb tissues of Cynops orientalis. Cui J; Zheng H; Zhang J; Jia L; Feng Y; Wang W; Li H; Chen F Wound Repair Regen; 2017 Sep; 25(5):836-845. PubMed ID: 28857387 [TBL] [Abstract][Full Text] [Related]
2. Glycan diversity in the vomeronasal organ of the Korean roe deer, Capreolus pygargus: A lectin histochemical study. Shin T; Kim J; Choi Y; Ahn M Acta Histochem; 2017 Oct; 119(8):778-785. PubMed ID: 29029805 [TBL] [Abstract][Full Text] [Related]
3. Identification of aberrantly expressed glycans in gastric cancer by integrated lectin microarray and mass spectrometric analyses. Li X; Guan F; Li D; Tan Z; Yang G; Wu Y; Huang Z Oncotarget; 2016 Dec; 7(52):87284-87300. PubMed ID: 27895315 [TBL] [Abstract][Full Text] [Related]
4. Global Identification and Differential Distribution Analysis of Glycans in Subcellular Fractions of Bladder Cells. Yang G; Huang L; Zhang J; Yu H; Li Z; Guan F Int J Biol Sci; 2016; 12(7):799-811. PubMed ID: 27313494 [TBL] [Abstract][Full Text] [Related]
5. N-Glycans in Xenopus laevis testis characterised by lectin histochemistry. Valbuena G; Madrid JF; Martínez de Ubago M; Gómez-Santos L; Alonso E; Díaz-Flores L; Sáez FJ Reprod Fertil Dev; 2016 Mar; 28(3):337-48. PubMed ID: 25482090 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Glycosphingolipid Glycans by Lectin Microarrays. Du H; Yu H; Ma T; Yang F; Jia L; Zhang C; Zhang J; Niu L; Yang J; Zhang Z; Zhang K; Li Z Anal Chem; 2019 Aug; 91(16):10663-10671. PubMed ID: 31353882 [TBL] [Abstract][Full Text] [Related]
7. ITRAQ-based quantitative proteomic analysis of Cynops orientalis limb regeneration. Tang J; Yu Y; Zheng H; Yin L; Sun M; Wang W; Cui J; Liu W; Xie X; Chen F BMC Genomics; 2017 Sep; 18(1):750. PubMed ID: 28938871 [TBL] [Abstract][Full Text] [Related]
8. Glycomic profiling of developmental changes in bovine testis by lectin histochemistry and further analysis of the most prominent alteration on the level of the glycoproteome by lectin blotting and lectin affinity chromatography. Manning JC; Seyrek K; Kaltner H; André S; Sinowatz F; Gabius HJ Histol Histopathol; 2004 Oct; 19(4):1043-60. PubMed ID: 15375747 [TBL] [Abstract][Full Text] [Related]
9. Glycoconjugate expression of chondrocytes and perichondrium during hyaline cartilage development in the rat. Zschäbitz A; Krahn V; Gabius HJ; Weiser H; Khaw A; Biesalski HK; Stofft E J Anat; 1995 Aug; 187 ( Pt 1)(Pt 1):67-83. PubMed ID: 7591987 [TBL] [Abstract][Full Text] [Related]
10. Comparative Analysis for Glycopatterns and Complex-Type Qin X; Guo Y; Du H; Zhong Y; Zhang J; Li X; Yu H; Zhang Z; Jia Z; Li Z Front Physiol; 2017; 8():596. PubMed ID: 28871230 [No Abstract] [Full Text] [Related]
11. Specificity of widely used lectins as probed with oligosaccharide and plant polysaccharide arrays. Shilova NV; Galanina OE; Polyakova SM; Nokel AY; Pazynina GV; Golovchenko VV; Patova OA; Mikshina PV; Gorshkova TA; Bovin NV Histochem Cell Biol; 2024 Dec; 162(6):495-510. PubMed ID: 39182197 [TBL] [Abstract][Full Text] [Related]
12. Glycoprofiling of Early Gastric Cancer Using Lectin Microarray Technology. Li T; Mo C; Qin X; Li S; Liu Y; Liu Z Clin Lab; 2018 Jan; 64(1):153-161. PubMed ID: 29479898 [TBL] [Abstract][Full Text] [Related]
13. Glycan profiling of endometrial cancers using lectin microarray. Nishijima Y; Toyoda M; Yamazaki-Inoue M; Sugiyama T; Miyazawa M; Muramatsu T; Nakamura K; Narimatsu H; Umezawa A; Mikami M Genes Cells; 2012 Oct; 17(10):826-36. PubMed ID: 22957961 [TBL] [Abstract][Full Text] [Related]
14. Sensing lectin-glycan interactions using lectin super-microarrays and glycans labeled with dye-doped silica nanoparticles. Wang X; Matei E; Deng L; Koharudin L; Gronenborn AM; Ramström O; Yan M Biosens Bioelectron; 2013 Sep; 47():258-64. PubMed ID: 23584388 [TBL] [Abstract][Full Text] [Related]
15. iTRAQ-based proteomic analysis of adaptive response in the regenerating limb of the Cynops orientalis newt. Geng XF; Guo JL; Zang XY; Sun JY; Li PF; Zhang FC; Xu CS Int J Dev Biol; 2015; 59(10-12):487-96. PubMed ID: 26864489 [TBL] [Abstract][Full Text] [Related]
16. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell. Li S; Mo C; Peng Q; Kang X; Sun C; Jiang K; Huang L; Lu Y; Sui J; Qin X; Liu Y PLoS One; 2013; 8(8):e71273. PubMed ID: 23977005 [TBL] [Abstract][Full Text] [Related]
17. Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration. Grow M; Neff AW; Mescher AL; King MW Dev Dyn; 2006 Oct; 235(10):2667-85. PubMed ID: 16871633 [TBL] [Abstract][Full Text] [Related]
19. Increased prolactin binding and morphological changes in the wound epithelium of regenerating limbs of Notophthalmus viridescens. Furlong ST; Chaney WG; Heideman MK; Bromley SC Cell Tissue Res; 1987 Aug; 249(2):411-9. PubMed ID: 3621305 [TBL] [Abstract][Full Text] [Related]
20. N-glycan profiles in H9N2 avian influenza viruses from chicken eggs and human embryonic lung fibroblast cells. Chen W; Zhong Y; Su R; Qi H; Deng W; Sun Y; Ma T; Wang X; Yu H; Wang X; Li Z J Virol Methods; 2017 Nov; 249():10-20. PubMed ID: 28797655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]