These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 28858243)

  • 1. Cooperation Techniques between LTE in Unlicensed Spectrum and Wi-Fi towards Fair Spectral Efficiency.
    Maglogiannis V; Naudts D; Shahid A; Giannoulis S; Laermans E; Moerman I
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28858243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Harmonious Coexistence in the Unlicensed Spectrum: Rational Cooperation of Operators.
    Bae S; Kim H
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29064434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Cell LTE-U/Wi-Fi Coexistence Evaluation Using a Reinforcement Learning Framework.
    de C Neto JM; G Neto SF; de Santana PM; de Sousa VA
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Q-Learning Based Fair and Efficient Coexistence of LTE in Unlicensed Band.
    Bajracharya R; Shrestha R; Kim SW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Coexistence of LTE-LAA in the Unlicensed Band: Modeling and Performance Analysis.
    Bitar N; Kalaa MOA; Seidman SJ; Refai HH
    IEEE Access; 2018 Oct; 6():52668-52681. PubMed ID: 35223336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless Coexistence Testing in the 5 GHz Band with LTE-LAA Signals.
    Al Kalaa MO; Seidman SJ
    IEEE Int Symp Electromagn Compat; 2019 Jul; 2019():437-442. PubMed ID: 35293201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An outlook on wireless coexistence with focus on medical devices.
    Al Kalaa MO; Guag J; Seidman SJ
    IEEE Electromagn Compat Mag; 2018; 7(3):60-64. PubMed ID: 35211353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method for Handling Massive IoT Traffic in 5G Networks.
    Marwat SNK; Mehmood Y; Khan A; Ahmed S; Hafeez A; Kamal T; Khan A
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multiarmed Bandit Approach for LTE-U/Wi-Fi Coexistence in a Multicell Scenario.
    Diógenes do Rego I; de Castro Neto JM; Neto SFG; de Santana PM; de Sousa VA; Vieira D; Venâncio Neto A
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Baseband Wireless Spectrum Hypervisor for Multiplexing Concurrent OFDM Signals.
    Figueiredo FAP; Mennes R; Jabandžić I; Jiao X; Moerman I
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistence Scheme for Uncoordinated LTE and WiFi Networks Using Experience Replay Based Q-Learning.
    Girmay M; Maglogiannis V; Naudts D; Shahid A; Moerman I
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic.
    Jin M; Jung JY; Lee JR
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Strategic Bargaining Game for a Spectrum Sharing Scheme in Cognitive Radio-Based Heterogeneous Wireless Sensor Networks.
    Mao Y; Cheng T; Zhao H; Shen N
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-Criteria Radio Spectrum Sharing With Subspace-Based Pareto Tracing.
    Grey ZJ; Mosleh S; Rezac JD; Ma Y; Coder JB; Dienstfrey AM
    IEEE Trans Commun; 2022 May; 70(5):. PubMed ID: 37065707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Spectrum Sharing for Future LTE-NR Networks.
    Barb G; Alexa F; Otesteanu M
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive Radio Networks for Internet of Things and Wireless Sensor Networks.
    Yu H; Zikria YB
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32947832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Handshake Sense Multiple Access Control for Cognitive Radio-Based IoT Networks.
    Shafiq M; Ahmad M; Khalil Afzal M; Ali A; Irshad A; Choi JG
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. End-to-End QoS "Smart Queue" Management Algorithms and Traffic Prioritization Mechanisms for Narrow-Band Internet of Things Services in 4G/5G Networks.
    Beshley M; Kryvinska N; Seliuchenko M; Beshley H; Shakshuki EM; Yasar AU
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive MCS selection and resource planning for energy-efficient communication in LTE-M based IoT sensing platform.
    Dao NN; Park M; Kim J; Cho S
    PLoS One; 2017; 12(8):e0182527. PubMed ID: 28796804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtualized MME Design for IoT Support in 5G Systems.
    Andres-Maldonado P; Ameigeiras P; Prados-Garzon J; Ramos-Munoz JJ; Lopez-Soler JM
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27556468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.