These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 28858269)

  • 1. A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials.
    Chen G; Vijver MG; Xiao Y; Peijnenburg WJGM
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28858269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials.
    Chen G; Peijnenburg W; Xiao Y; Vijver MG
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28704975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity.
    Oksel C; Ma CY; Liu JJ; Wilkins T; Wang XZ
    Adv Exp Med Biol; 2017; 947():103-142. PubMed ID: 28168667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current situation on the availability of nanostructure-biological activity data.
    Oksel C; Ma CY; Wang XZ
    SAR QSAR Environ Res; 2015; 26(2):79-94. PubMed ID: 25608859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Nano-QSTR model to predict nano-cytotoxicity: an approach using human lung cells data.
    Meneses J; González-Durruthy M; Fernandez-de-Gortari E; Toropova AP; Toropov AA; Alfaro-Moreno E
    Part Fibre Toxicol; 2023 May; 20(1):21. PubMed ID: 37211608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
    Lewis RW; Bertsch PM; McNear DH
    Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Nanotoxicology Models for Environmental Risk Assessment of Engineered Nanomaterials.
    Tang W; Zhang X; Hong H; Chen J; Zhao Q; Wu F
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing species sensitivity distributions for metallic nanomaterials considering the characteristics of nanomaterials, experimental conditions, and different types of endpoints.
    Chen G; Peijnenburg WJGM; Xiao Y; Vijver MG
    Food Chem Toxicol; 2018 Feb; 112():563-570. PubMed ID: 28390859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aquatic Environment Exposure and Toxicity of Engineered Nanomaterials Released from Nano-Enabled Products: Current Status and Data Needs.
    Moloi MS; Lehutso RF; Erasmus M; Oberholster PJ; Thwala M
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study.
    Baalousha M; Yang Y; Vance ME; Colman BP; McNeal S; Xu J; Blaszczak J; Steele M; Bernhardt E; Hochella MF
    Sci Total Environ; 2016 Jul; 557-558():740-53. PubMed ID: 27046139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the potential of in silico machine learning tools for the prediction of acute Daphnia magna nanotoxicity.
    Balraadjsing S; Peijnenburg WJGM; Vijver MG
    Chemosphere; 2022 Nov; 307(Pt 2):135930. PubMed ID: 35961453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities.
    Zhai Y; Hunting ER; Wouterse M; Peijnenburg WJGM; Vijver MG
    Ecotoxicol Environ Saf; 2017 Nov; 145():349-358. PubMed ID: 28759764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered nanomaterials and oxidative stress: current understanding and future challenges.
    Mendoza RP; Brown JM
    Curr Opin Toxicol; 2019 Feb; 13():74-80. PubMed ID: 31263794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-Interactions of Engineered Nanomaterials in the Marine Environment: Towards an Eco-Design Framework.
    Corsi I; Bellingeri A; Eliso MC; Grassi G; Liberatori G; Murano C; Sturba L; Vannuccini ML; Bergami E
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein corona on nanomaterials by machine learning using novel descriptors.
    Duan Y; Coreas R; Liu Y; Bitounis D; Zhang Z; Parviz D; Strano M; Demokritou P; Zhong W
    NanoImpact; 2020 Jan; 17():. PubMed ID: 32104746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-examination of engineered nanomaterials in crop production: Application and related implications.
    Kusiak M; Oleszczuk P; Jośko I
    J Hazard Mater; 2022 Feb; 424(Pt A):127374. PubMed ID: 34879568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-(Q)SAR for Cytotoxicity Prediction of Engineered Nanomaterials.
    Buglak AA; Zherdev AV; Dzantiev BB
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lessons learned: Are engineered nanomaterials toxic to terrestrial plants?
    Reddy PVL; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL
    Sci Total Environ; 2016 Oct; 568():470-479. PubMed ID: 27314900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered nanomaterials for plant growth and development: A perspective analysis.
    Verma SK; Das AK; Patel MK; Shah A; Kumar V; Gantait S
    Sci Total Environ; 2018 Jul; 630():1413-1435. PubMed ID: 29554761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.