These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28858348)

  • 1. A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism.
    Guo L; Mo R; Shi W; Huang Y; Leong ZY; Ding M; Chen F; Yang HY
    Nanoscale; 2017 Sep; 9(35):13305-13312. PubMed ID: 28858348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline Decorated with Prussian Blue Nanocrystals.
    Shi W; Liu X; Deng T; Huang S; Ding M; Miao X; Zhu C; Zhu Y; Liu W; Wu F; Gao C; Yang SW; Yang HY; Shen J; Cao X
    Adv Mater; 2020 Aug; 32(33):e1907404. PubMed ID: 32656808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrahigh-Desalination-Capacity Dual-Ion Electrochemical Deionization Device Based on Na
    Zhao W; Guo L; Ding M; Huang Y; Yang HY
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40540-40548. PubMed ID: 30372016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na
    Cao J; Wang Y; Wang L; Yu F; Ma J
    Nano Lett; 2019 Feb; 19(2):823-828. PubMed ID: 30658040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System.
    Vafakhah S; Guo L; Sriramulu D; Huang S; Saeedikhani M; Yang HY
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5989-5998. PubMed ID: 30667226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Ion Electrochemical Deionization System with Binder-Free Aerogel Electrodes.
    Zhao W; Ding M; Guo L; Yang HY
    Small; 2019 Mar; 15(9):e1805505. PubMed ID: 30714314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient lithium extraction using redox-active Prussian blue nanoparticles-anchored activated carbon intercalation electrodes via membrane capacitive deionization.
    Rethinasabapathy M; Bhaskaran G; Hwang SK; Ryu T; Huh YS
    Chemosphere; 2023 Sep; 336():139256. PubMed ID: 37331664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Formation of Prussian Blue Analogue Nanoparticles Decorated with Three-Dimensional Carbon Nanosheet Networks for Superior Hybrid Capacitive Deionization Performance.
    Wang S; Wang G; Wang Y; Song H; Lv S; Li T; Li C
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44049-44057. PubMed ID: 32880429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-standing flexible film as a binder-free electrode for an efficient hybrid deionization system.
    Sriramulu D; Yang HY
    Nanoscale; 2019 Mar; 11(13):5896-5908. PubMed ID: 30874713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Faradaic Electrodes Open a New Era for Capacitive Deionization.
    Li Q; Zheng Y; Xiao D; Or T; Gao R; Li Z; Feng M; Shui L; Zhou G; Wang X; Chen Z
    Adv Sci (Weinh); 2020 Nov; 7(22):2002213. PubMed ID: 33240769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dual-ion electrochemistry deionization system based on AgCl-Na
    Chen F; Huang Y; Guo L; Ding M; Yang HY
    Nanoscale; 2017 Jul; 9(28):10101-10108. PubMed ID: 28695930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization.
    Reale ER; Shrivastava A; Smith KC
    Water Res; 2019 Nov; 165():114995. PubMed ID: 31450221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency analysis and resonant operation for efficient capacitive deionization.
    Ramachandran A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Nov; 144():581-591. PubMed ID: 30092504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Dual-Ion Capacitive Deionization System Design with Ultrahigh Desalination Performance.
    Jiang Y; Hou Z; Yan L; Gang H; Wang H; Chai L
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving Enhanced Capacitive Deionization by Interfacial Coupling in PEDOT Reinforced Cobalt Hexacyanoferrate Nanoflake Arrays.
    Shi W; Xue M; Qian X; Xu X; Gao X; Zheng D; Liu W; Wu F; Gao C; Shen J; Cao X
    Glob Chall; 2021 Aug; 5(8):2000128. PubMed ID: 34377532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layered double hydroxide coated electrospun carbon nanofibers as the chloride capturing electrode for ultrafast electrochemical deionization.
    Liu Y; Du X; Wang Z; Wang L; Liu Z; Shi W; Zheng R; Dou X; Zhu H; Yuan X
    J Colloid Interface Sci; 2022 Mar; 609():289-296. PubMed ID: 34896829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable Desalination by 3:1 Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TiONTs) Composite via Capacitive Deionization at Different Sodium Chloride Concentrations.
    Lazarte JPL; Bautista-Patacsil L; Eusebio RCP; Orbecido AH; Doong RA
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31540150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of amorphous iron phosphate in pseudocapacitive sodium ion removal for water desalination.
    Bentalib A; Pan Y; Yao L; Peng Z
    RSC Adv; 2020 Apr; 10(29):16875-16880. PubMed ID: 35496930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.