These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 28858428)
21. Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine-purine inversion site of an RNA duplex. Toh DK; Devi G; Patil KM; Qu Q; Maraswami M; Xiao Y; Loh TP; Zhao Y; Chen G Nucleic Acids Res; 2016 Nov; 44(19):9071-9082. PubMed ID: 27596599 [TBL] [Abstract][Full Text] [Related]
23. Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes. Devi G; Yuan Z; Lu Y; Zhao Y; Chen G Nucleic Acids Res; 2014 Apr; 42(6):4008-18. PubMed ID: 24423869 [TBL] [Abstract][Full Text] [Related]
24. Binding of HIV-1 TAR mRNA to a peptide nucleic acid oligomer and its conjugates with metal-ion-binding multidentate ligands. Belousoff MJ; Gasser G; Graham B; Tor Y; Spiccia L J Biol Inorg Chem; 2009 Feb; 14(2):287-300. PubMed ID: 19015900 [TBL] [Abstract][Full Text] [Related]
25. Hybridization of pyrrolidinyl peptide nucleic acids and DNA: selectivity, base-pairing specificity, and direction of binding. Vilaivan T; Srisuwannaket C Org Lett; 2006 Apr; 8(9):1897-900. PubMed ID: 16623579 [TBL] [Abstract][Full Text] [Related]
26. Effect of terminal amino acids on the stability and specificity of PNA-DNA hybridisation. Silvester NC; Bushell GR; Searles DJ; Brown CL Org Biomol Chem; 2007 Mar; 5(6):917-23. PubMed ID: 17340007 [TBL] [Abstract][Full Text] [Related]
27. Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs. Patil KM; Toh DK; Yuan Z; Meng Z; Shu Z; Zhang H; Ong AAL; Krishna MS; Lu L; Lu Y; Chen G Nucleic Acids Res; 2018 Sep; 46(15):7506-7521. PubMed ID: 30011039 [TBL] [Abstract][Full Text] [Related]
28. Biophysics of Artificially Expanded Genetic Information Systems. Thermodynamics of DNA Duplexes Containing Matches and Mismatches Involving 2-Amino-3-nitropyridin-6-one (Z) and Imidazo[1,2-a]-1,3,5-triazin-4(8H)one (P). Wang X; Hoshika S; Peterson RJ; Kim MJ; Benner SA; Kahn JD ACS Synth Biol; 2017 May; 6(5):782-792. PubMed ID: 28094993 [TBL] [Abstract][Full Text] [Related]
29. Expanded-size bases in naturally sized DNA: evaluation of steric effects in Watson-Crick pairing. Gao J; Liu H; Kool ET J Am Chem Soc; 2004 Sep; 126(38):11826-31. PubMed ID: 15382917 [TBL] [Abstract][Full Text] [Related]
30. Hydrogen bonding versus stacking stabilization by modified nucleobases incorporated in PNA.DNA duplexes. Sen A; Nielsen PE Biophys Chem; 2009 Apr; 141(1):29-33. PubMed ID: 19162391 [TBL] [Abstract][Full Text] [Related]
31. The crystal structure of non-modified and bipyridine-modified PNA duplexes. Yeh JI; Pohl E; Truan D; He W; Sheldrick GM; Du S; Achim C Chemistry; 2010 Oct; 16(39):11867-75. PubMed ID: 20859960 [TBL] [Abstract][Full Text] [Related]
32. An empirical approach for thermal stability (Tm) prediction of PNA/DNA duplexes. Takiya T; Seto Y; Yasuda H; Suzuki T; Kawai K Nucleic Acids Symp Ser (Oxf); 2004; (48):131-2. PubMed ID: 17150513 [TBL] [Abstract][Full Text] [Related]
33. Strand invasion of mixed-sequence B-DNA by acridine-linked, gamma-peptide nucleic acid (gamma-PNA). Rapireddy S; He G; Roy S; Armitage BA; Ly DH J Am Chem Soc; 2007 Dec; 129(50):15596-600. PubMed ID: 18027941 [TBL] [Abstract][Full Text] [Related]
34. On the stability of peptide nucleic acid duplexes in the presence of organic solvents. Sen A; Nielsen PE Nucleic Acids Res; 2007; 35(10):3367-74. PubMed ID: 17478520 [TBL] [Abstract][Full Text] [Related]
35. Base pair opening kinetics study of the aegPNA:DNA hydrid duplex containing a site-specific GNA-like chiral PNA monomer. Seo YJ; Lim J; Lee EH; Ok T; Yoon J; Lee JH; Lee HS Nucleic Acids Res; 2011 Sep; 39(16):7329-35. PubMed ID: 21586589 [TBL] [Abstract][Full Text] [Related]
36. Temperature dependence of the Raman spectrum of DNA. II. Raman signatures of premelting and melting transitions of poly(dA).poly(dT) and comparison with poly(dA-dT).poly(dA-dT). Movileanu L; Benevides JM; Thomas GJ Biopolymers; 2002 Mar; 63(3):181-94. PubMed ID: 11787006 [TBL] [Abstract][Full Text] [Related]
37. Duplex formation and secondary structure of γ-PNA observed by NMR and CD. Viéville JM; Barluenga S; Winssinger N; Delsuc MA Biophys Chem; 2016 Mar; 210():9-13. PubMed ID: 26493008 [TBL] [Abstract][Full Text] [Related]
38. Effects of hypoxanthine substitution in peptide nucleic acids targeting KRAS2 oncogenic mRNA molecules: theory and experiment. Sanders JM; Wampole ME; Chen CP; Sethi D; Singh A; Dupradeau FY; Wang F; Gray BD; Thakur ML; Wickstrom E J Phys Chem B; 2013 Oct; 117(39):11584-95. PubMed ID: 23972113 [TBL] [Abstract][Full Text] [Related]
39. An experimental study of mechanism and specificity of peptide nucleic acid (PNA) binding to duplex DNA. Kuhn H; Demidov VV; Nielsen PE; Frank-Kamenetskii MD J Mol Biol; 1999 Mar; 286(5):1337-45. PubMed ID: 10064701 [TBL] [Abstract][Full Text] [Related]
40. Electrochemiluminescent monomers for solid support syntheses of Ru(II)-PNA bioconjugates: multimodal biosensing tools with enhanced duplex stability. Joshi T; Barbante GJ; Francis PS; Hogan CF; Bond AM; Gasser G; Spiccia L Inorg Chem; 2012 Mar; 51(5):3302-15. PubMed ID: 22339152 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]