These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28858435)

  • 1. In vivo multiphoton microscopy using a handheld scanner with lateral and axial motion compensation.
    Sherlock B; Warren SC; Alexandrov Y; Yu F; Stone J; Knight J; Neil MAA; Paterson C; French PMW; Dunsby C
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28858435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibre-coupled multiphoton microscope with adaptive motion compensation.
    Sherlock B; Warren S; Stone J; Neil M; Paterson C; Knight J; French P; Dunsby C
    Biomed Opt Express; 2015 May; 6(5):1876-84. PubMed ID: 26137387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral-domain optical coherence phase and multiphoton microscopy.
    Joo C; Kim KH; de Boer JF
    Opt Lett; 2007 Mar; 32(6):623-5. PubMed ID: 17308581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable fibre-coupled multiphoton microscopy with a negative curvature fibre.
    Sherlock B; Yu F; Stone J; Warren S; Paterson C; Neil MA; French PM; Knight J; Dunsby C
    J Biophotonics; 2016 Jul; 9(7):715-20. PubMed ID: 26989868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism.
    Zeng S; Lv X; Zhan C; Chen WR; Xiong W; Jacques SL; Luo Q
    Opt Lett; 2006 Apr; 31(8):1091-3. PubMed ID: 16625913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy.
    Iyer V; Losavio BE; Saggau P
    J Biomed Opt; 2003 Jul; 8(3):460-71. PubMed ID: 12880352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Handheld multi-modal imaging for point-of-care skin diagnosis based on akinetic integrated optics optical coherence tomography.
    Sancho-Durá J; Zinoviev K; Lloret-Soler J; Rubio-Guviernau JL; Margallo-Balbás E; Drexler W
    J Biophotonics; 2018 Oct; 11(10):e201800193. PubMed ID: 29992726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color third-harmonic generation imaging.
    Du Y; Zhuang Z; He J; Liu H; Qiu P; Wang K
    J Biophotonics; 2018 Sep; 11(9):e201800071. PubMed ID: 29770596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient reduction of speckle noise in Optical Coherence Tomography.
    Szkulmowski M; Gorczynska I; Szlag D; Sylwestrzak M; Kowalczyk A; Wojtkowski M
    Opt Express; 2012 Jan; 20(2):1337-59. PubMed ID: 22274479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning.
    Cheng LC; Chang CY; Lin CY; Cho KC; Yen WC; Chang NS; Xu C; Dong CY; Chen SJ
    Opt Express; 2012 Apr; 20(8):8939-48. PubMed ID: 22513605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spherical aberration correction in multiphoton fluorescence imaging using objective correction collar.
    Lo W; Sun Y; Lin SJ; Jee SH; Dong CY
    J Biomed Opt; 2005; 10(3):034006. PubMed ID: 16229650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined two-photon microscopy and optical coherence tomography using individually optimized sources.
    Jeong B; Lee B; Jang MS; Nam H; Yoon SJ; Wang T; Doh J; Yang BG; Jang MH; Kim KH
    Opt Express; 2011 Jul; 19(14):13089-96. PubMed ID: 21747461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device.
    Yih JN; Hu YY; Sie YD; Cheng LC; Lien CH; Chen SJ
    Opt Lett; 2014 Jun; 39(11):3134-7. PubMed ID: 24875995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser spectral characterization in multiphoton microscopy.
    Quercioli F; Tiribilli B; Vassalli M; Ghirelli A
    Appl Opt; 2004 May; 43(15):3055-60. PubMed ID: 15176192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biopsy-needle compatible varifocal multiphoton rigid probe for depth-resolved optical biopsy.
    Li A; Hall G; Chen D; Liang W; Ning B; Guan H; Li X
    J Biophotonics; 2019 Jan; 12(1):e201800229. PubMed ID: 30117286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator.
    Shao Y; Qin W; Liu H; Qu J; Peng X; Niu H; Gao BZ
    Opt Lett; 2012 Jul; 37(13):2532-4. PubMed ID: 22743445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics.
    Bortoletto F; Bonoli C; Panizzolo P; Ciubotaru CD; Mammano F
    PLoS One; 2011; 6(7):e22321. PubMed ID: 21814575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin.
    Adabi S; Fotouhi A; Xu Q; Daveluy S; Mehregan D; Podoleanu A; Nasiriavanaki M
    Skin Res Technol; 2018 May; 24(2):265-273. PubMed ID: 29143429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blu-ray disk lens as the objective of a miniaturized two-photon fluorescence microscope.
    Chung HY; Kuo WC; Cheng YH; Yu CH; Chia SH; Lin CY; Chen JS; Tsai HJ; Fedotov AB; Ivanov AA; Zheltikov AM; Sun CK
    Opt Express; 2013 Dec; 21(25):31604-14. PubMed ID: 24514733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.